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Machine Learning

the study of algorithms that computer systems use to improve their performance
a specific task relying on patterns and inference from data (experience).
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Deep Machine Learning

the study of algorithms that computer systems use to improve their performance a
specific task relying on patterns and inference from @ (6t &f... data (experience).

Filter Images from Zeiler & Fergus, 2013
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Intelligent?
“Intelligence measures an agent’s ability to adapt and

achieve goals in a wide range of environments.”
A Collection of Definitions of Intelligence, 2007 Conference on Advances in
Test Artificial General Intelligence (Wikipedia)




Domain Adaptive Learning: why?

Appearance changes due to seasonal and time changes.

Slide Credit: M. Mancini, Domain Adaptation Tutorial, ICIAP 2019



Domain Adaptive Learning: why?

Appearance changes due to different sensors.




Domain Adaptive Learning: why?

Use of synthetic data




Domain Adaptive Learning: why?

Overcoming costly/unfeasible data collection




Domain Adaptation Settings

Train ﬁ 9‘ % Test Source ﬁ ; ﬁ Target



Domain Adaptation Settings

Train ﬁ 9‘ % Test Source ﬁ ; ﬁ Target

Unsupervised DA: transductive setting. T is available during training but is unlabeled

Labelled Source Domain  Unlabelled Target Domain

Train Test



Domain Adaptation Settings

Number of Sources
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Slide Credit: M. Mancini, Domain Adaptation Tutorial, ICIAP 2019



Domain Adaptation Settings

Number of Sources
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Slide Credit: M. Mancini, Domain Adaptation Tutorial, ICIAP 2019



Domain Adaptation Settings
The Label Space

Closed Set Partial Open Set

Slide Credit: M. Mancini, Domain Adaptation Tutorial, ICIAP 2019



Without target data at training time

Domain Generalization




Without target data at training time

Domain Generalization Continuous DA
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Measuring and Closing the Domain Shift

Maximum Mean Discrepancy (MMD): Distance between embeddings of the probability distributions in
a reproducing kernel Hilbert space.
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Gretton et al, NIPS 2007



Measuring and Closing the Domain Shift

Maximum Mean Discrepancy (MMD): Distance between embeddings of the probability distributions in
a reproducing kernel Hilbert space.
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Measuring and Closing the Domain Shift

Adversarial Domain Classification

When trained on source
only, feature distributions
do not match:

Our goal (after
adaptation):




Measuring and Closing the Domain Shift
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Ganin, Y., et al. “Domain-adversarial training of neural networks”. The Journal of Machine Learning Research, 17(1), 2096-2030, 2016..



Measuring and Closing the Domain Shift

Visual (Pixel-Level) Adaptation

Monet < Photos ) Zebras _ Horses Summer  Winter

Monet —> photo » : zebra —) horse ) summer — winter
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Zhu, J. Y., Park, T., Isola, P., & Efros, A.. “Unpaired image-to-image translation using cycle-consistent adversarial networks”. In ICCV 2017.



Measuring and Closing the Domain Shift
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Zhu, J. Y., Park, T., Isola, P., & Efros, A.. “Unpaired image-to-image translation using cycle-consistent adversarial networks”. In ICCV 2017.



Measuring and Closing the Domain Shift
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Russo, P., Carlucci, F. M., Tommasi, T., & Caputo, B. “From source to target and back: symmetric bi-directional adaptive gan”. In CVPR 2018



Measuring and Closing the Domain Shift
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Self-Supervision

» A form of unsupervised learning where the data provides its own supervision
* In general, withhold some part of the data, and ask the network to predict it

* The task defines a proxy loss, and the network is forced to learn what we really
care about, e.g. a semantic representation, in order to solve it

Zhang et al, Colorful Image Colorization. In ECCV 2016 Pathak et al, Image Inpainting, CVPR 2016



Self-Supervision: Why?

» A form of unsupervised learning where the data provides its own supervision
* In general, withhold some part of the data, and ask the network to predict it

* Some areas are supervision starved
« availability of vast numbers of unlabelled images / videos
* how infants may learn

The Scientist in the Crib: What early learning tells us
about the mind. Alison Gopnik et al

The Development of Embodied Cognition: Six Lessons
from Babies. Linda Smith and Michael Gasser

~

Slide Credit: A. Zisserman



Visual Generalization by Solving Jigsaw Puzzles

= « Decompose an image in patches
: ' » Shuffle them = remove their spatial co-location
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Visual Generalization by Solving Jigsaw Puzzles
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Visual Generalization by Solving Jigsaw Puzzles
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Visual Generalization by Solving Jigsaw Puzzles
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Visual Generalization by Solving Jigsaw Puzzles
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Visual Generalization by Solving Jigsaw Puzzles
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“Domain Generalization by Solving Jigsaw Puzzle”, IEEE CVPR 2019 (Oral)




From Features to Images & Multi-Task
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From Features to Images & Multi-Task

. P ‘ § =liew - [ Obiject Classifier
| , ﬁ - E”gﬁ - | /m / / (object label)
‘i P et ant

5 - -l ‘ P Iy pu——— ya

/ L\ [ )

: @ % PACS art_paint cartoon sketch photo = Awvg.
ﬁ*& £ |lie C-CFN-Deep Al 59.69 59.88 45.66  85.42 | 62.66
e | & C-CFN-JiGen 60.68 60.55 55.66 82.68 | 64.89
] ‘ %% Deep All 63.30 63.13 54.07 87.70 | 67.05
\ﬁ m JiGen 67.63 71.71 65.18 89.00 | 73.38




More Results

PACS art_paint cartoon sketch photo @ Avg.
C-CFN-Deep All 59.69 59.88 45.66 85.42 | 62.66
C-CFN-JiGen 60.68 60.55 55.66 82.68 | 64.89
Deep All 63.30 63.13 54.07 87.70 | 67.05
JiGen 67.63 71.71 65.18 89.00 | 73.38
AAAI 2018 66.23 66.88 58.96 88.00 ' 70.02
GCPR 2018 63.87 70.70 64.66 85.55 | 71.20
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More Results

Deep All X JiGen v/ Deep All X JiGen v/
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Domain Adaptation

Ordered
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Partial Domain Adaptation

Cao et al, ECCV 2018



Partial Domain Adaptation
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S. Bucci, A. D’Innocente, T. Tommasi “Tackling Partial Domain Adaptation with Self Supervision”. In ICIAP 2019



Partial Domain Adaptation
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Partial Domain Adaptation
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Partial Domain Adaptation

ﬂ Caltech amazon Webcam 2 DSLR e
Office-31

A—-W D—-W W=D A—-D D—-A WA | Avg.
Resnet-50 15.37 94.13 98.84 79.19 81.28 85.49 85.73
DAN]15] 59.32 73.90 90.45 61.78 74.95 67.64 71.34
DANNTJ10] 75.56 96.27 98.73 81.53 82.78 86.12 86.50
ADDA[27] 75.67 95.38 99.85 83.41 83.62 84.25 87.03
RTN]16] 78.98 93.22 85.35 77.07 89.25 89.46 85.56
IWAN [32] 89.15 99.32 99.36 90.45 95.62 94.26 94.69
SAN [3] 93.90 99.32 99.36 94.27 94.15 88.73 94.96
PADA[4] 86.54 99.32 100 82.17 92.69 95.41 92.69
TWIN [20] 86.00 99.30 100 86.80 94.70 94.50 93.60
JiGen [5] 92.88 92.43 98.94 89.6 84.06 92.94 91.81
SSPDA 91.52 92.88 98.94 90.87 90.61 94.36 93.20
SSPDA-vy 99.32 94.69 99.36 96.39 86.36 94.22 95.06
SSPDA-PADA  99.66 94.46 99.57 97.67 87.33 94.26 95.49




Partial Domain Adaptation
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Take Home Message

* Deep Learning
% powerful but data-hungry
% not robust across domains, lacks in generalization

o,
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* Domain Adaptation Techniques
% allow recognition across domains
% need target unlabeled data at training time

o,
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* Domain Generalization
% no need of target data at training time
% can deal with one or multiple sources, no need of domain label (mixed sources)

* Self-Supervision
% powerful tool to exploit unlabeled data and reduce deep-learning data hunger
powerful tool to support learning across domains, in adaptation and generalization

o,
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% improve robustness to label noise, novelty detection...
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* Deep Learning
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% not robust across domains, lacks in generalization

* Domain Adaptation Techniques
% allow recognition across domains
% need target unlabeled data at training time

* Domain Generalization
% no need of target data at training time
% can deal with one or multiple sources, no need of domain label (mixed sources)

* Self-Supervision
% powerful tool to exploit unlabeled data and reduce deep-learning data hunger
% powerful tool to support learning across domains, in adaptation and generalization

% improve robustness to label noise, novelty detection...

Thanks! Questions?



