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COBISS.SI-ID=303769344

ISBN 978-961-90901-9-0 (pdf)

2



Contents

Preface 4

Committees 5

Invited Talk 6

Original Contributions 7
On Learning Vehicle Detection in Satellite Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
CNN-CASS: CNN for Classification of Coronary Artery Stenosis Score in MPR Images . . . . . . . . . 17
Towards Data-driven Multi-target Tracking for Autonomous Driving . . . . . . . . . . . . . . . . . . . 27
A new semi-supervised method improving optical flow on distant domains . . . . . . . . . . . . . . . 37
USACv20: robust essential, fundamental and homography matrix estimation . . . . . . . . . . . . . . 46
Practical high-speed motion sensing: event cameras vs. global shutter . . . . . . . . . . . . . . . . . . 55
movie2trailer: Unsupervised trailer generation using Anomaly detection . . . . . . . . . . . . . . . . . 64
Segmentation and Recovery of Superquadric Models using Convolutional Neural Networks . . . . . . . 74

3



Preface

We would like to welcome you to the 25th Computer Vision Winter Workshop (CVWW2020). This year the workshop is
organized by the Slovenian Pattern Recognition Society (SPRS), and held in Rogaška Slatina, Slovenia, from February
3rd to February 5th, 2020. We hope that your experience at CVWW is both professionally and personally rewarding!

The Computer Vision Winter Workshop (CVWW) is an annual international meeting of several computer vision
research groups, located in Ljubljana, Prague, Vienna, and Graz. The aim of the workshop is to foster interaction and
exchange of ideas among researchers and PhD students. The focus of the workshop spans a wide variety of computer
vision and pattern recognition topics, such as image analysis, medical imaging, 3D vision, human-computer interaction,
vision for robotics, machine learning, as well as applied computer vision and pattern recognition.

CVWW 2020 received a total of 30 submissions from six countries. The paper selection was coordinated by the
Program Chairs, and included a rigorous double-blind review process. The international Technical Program Committee
consisted of 33 renowned computer vision experts, who conducted the review. Each submission was examined by three
experts, who were asked to comment on the strengths and weaknesses of the papers and justify their recommendation
for accepting or rejecting a submission. The Program Chairs used the reviewers’ comments to render the final decision
on each paper. As a result of this review process, 8 original papers were accepted for publications. These have been
presented at the workshop as oral presentations. Workshop also included 16 invited presentations of on-going works.
The Program Chairs would like to thank all reviewers for their high-quality and detailed comments, which served
as a valuable source of feedback for all authors, and most of all for their time and effort, which helped to make the
CVWW2020 a success.

The workshop program included an invited talk by assoc. prof. dr. Tatiana Tommasi (Department of Control and
Computer Engineering, Politecnico di Torino), to whom we thank for her participation. We also extend our thanks to
the Slovenian Pattern Recognition Society, through which the workshop was organized, and we want to acknowledge
and thank our supporters from the Faculty of Computer and Information Science, University of Ljubljana for their
contributions. To the sponsor and their representatives in attendance, thank you!

We hope that the 25th iteration of the Computer Vision Winter Workshop is a productive and enjoyable meeting
for you and your colleagues, and inspires new ideas that can advance your professional activities.

Welcome and thank you for your participation!

Official sponsor
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Invited Talk

Learning to Generalize with Self-Supervision

Tatiana Tommasi
Department of Control and Computer Engineering, Politecnico di Torino

tatiana.tommasi@polito.it

Although deep networks have significantly increased the performance of visual recognition methods, it is still
challenging to achieve the robustness across visual domains that is necessary for real-world applications. In many
practical tasks collecting annotated samples may be very costly, but at the same time using models trained from data
belonging to a different domain will produce only poor results. To tackle this issue, research on Domain Adaptation
(DA) and Generalization (DG) has flourished over the last decade with several approaches based on feature alignment,
generative and adversarial solutions. In this talk I will present a new point of view on the DA and DG settings that
considers self-supervision as an auxiliary powerful tool to adapt and generalize across domains. Specifically the talk
will show how solving a jigsaw puzzle or recognizing the orientation of an image can improve robustness and support
generalization of models learned on photos, cartoon, paintings or sketches. We will also see how this beneficial effect
extends from object classification to detection and may also be applied when the shift across domains involve different
label sets (partial domain adaptation) or when the target domain reduces to a single test sample.
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On Learning Vehicle Detection in Satellite Video

Roman Pflugfelder1,2, Axel Weissenfeld1, Julian Wagner2

1AIT Austrian Institute of Technology, Center for Digital Safety & Security
2TU Wien, Institute of Visual Computing & Human-Centered Technology

{roman.pflugfelder|axel.weissenfeld}@ait.ac.at, e1326108@student.tuwien.ac.at

Abstract. Vehicle detection in aerial and satellite
images is still challenging due to their tiny appear-
ance in pixels compared to the overall size of remote
sensing imagery. Classical methods of object detec-
tion very often fail in this scenario due to violation
of implicit assumptions made such as rich texture,
small to moderate ratios between image size and ob-
ject size. Satellite video is a very new modality which
introduces temporal consistency as inductive bias.
Approaches for vehicle detection in satellite video
use either background subtraction, frame differenc-
ing or subspace methods showing moderate perfor-
mance (0.26 - 0.82 F1 score). This work proposes
to apply recent work on deep learning for wide-area
motion imagery (WAMI) on satellite video. We show
in a first approach comparable results (0.84 F1) on
Planet’s SkySat-1 LasVegas video with room for fur-
ther improvement.

1. Introduction

Object detection, i.e. the recognition and locali-
sation of objects, in visual data is a very important
and still unsolved problem. For example, the prob-
lem becomes challenging in aerial imaging and re-
mote sensing as the data and scenes differ signifi-
cantly from the case considered usually in computer
vision [6, 25].

Such remote detection is important in surveil-
lance, as demanding applications let surveillance cur-
rently undergo a transition from near to mid dis-
tances (as with security cameras) to sceneries such as
whole cities, traffic networks, forests, and green bor-
ders. Beside coverage new, low orbit satellite con-
stellations1 will allow multiple daily revisits and con-
stantly falling costs per image. Such applications can
be found e.g. in urban planning, traffic monitoring,

1https://earthi.space, 11/03/2019

Figure 1. Results of the proposed method. Top, left:
video frame of the SkySat-1 LasVegas video showing a
city highway with multiple cars. Top, right: vehicle la-
belling provided by Zhang et al. [34, 33]. Bottom, left:
the method’s response (heat) map. Bottom, right: the final
segmentation result. The network detects all labelled cars
and even a bus or truck at the right image border.

driver behaviour analysis, and road verification for
assisting both scene understanding and land use clas-
sification. Civilian and military security is another
area to benefit with applications including military
reconnaissance, detection of abnormal or dangerous
behaviour, border protection, and surveillance of re-
stricted areas.

Although remotely acquired data shows great re-
duction of occlusion and perspective distortion due
to the overhead view, new difficulties arise. Typical
aerial and satellite images are very large in resolution
and data size. For example, wide-area motion im-
agery (WAMI) provides instead of a few megapixel
(MP) typical for security cameras up to 400 MP per
image frame and three image frames per second
(2.2 TB/s for 16 bit per px). Satellite video gives
today 4K RGB video with 30 frames per second
(759.3 MB/s). Satellite images capture large scener-
ies, usually dozens of square kilometers which in-
troduce instead of a few visually large objects, thou-
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sands of tiny objects coming from hundreds of cat-
egories in a single image. At the same time these
objects reduce in pixel size by orders of magnitude
from 104 px to 102 px, to even 10 px for satellite
video [34], depending on the camera’s ground sam-
ple distance (GSD)2.

This severe magnification of scenery and reduc-
tion of object size to very tiny appearances have
consequences. Object detection becomes very am-
biguous and sensitive to noise and nuisances and
the search space dramatically increases and becomes
very sparse. Inferred labels of data usually capture
instead of the bounding box or contour sole posi-
tions, as the extent of objects is even for humans,
e.g. in WAMI or satellite video, unrecognizable. All
this leads to major difficulties if not inapplicability
of vanilla methods [17]. Manual labelling of data is
furthermore very tedious, for many cases impossible,
hence, research on object detection in satellite video
relies currently on background subtraction and frame
differencing [16, 28, 32, 18, 4, 3].

Recent literature [22, 23, 35, 15, 31, 8, 27, 17, 34,
13, 2, 29, 30] also suggests to apply deep learning
on aerial and satellite high resolution RGB single
images, however, the work shows moderate perfor-
mance for GSD larger than 15 cm [23]. All work is
also tested with rather narrow datasets of very dif-
ferent sceneries which makes the validity of the re-
sults questionable and the comparison of methods
difficult. It is therefore unclear, if deep learning on
high resolution images will further improve, given
the limitations of the data.

Another problem of still images is the impossi-
bility to capture the dynamic behaviour of vehicles
which is essential for many applications. For exam-
ple, vehicle heading and speed are important indica-
tors in traffic models. Although rapid retargeting for
multi-angular image sequences with Worldview-2 is
possible [21], the time interval of around one minute
between consecutive images is too large for reason-
able analysis.

For these reasons the paper addresses the problem
of vehicle detection in satellite video. Such video
was introduced 1999 by DLR-TubSat, since 2013
Planet’s SkySat-1 delivers up to 120 s, 30 Hz, 2K
panchromatic video covering two areas of 1.1 km2

with up to 80 cm GSD. China’s Jilin programme
launched 2015, now provides even 4 MP color video.

2GSD is the spatial distance of two adjacent pixels on the
image measured on the ground.

To the best of our knowledge this is the first work
on using neural networks and deep learning to di-
rectly regress positions of vehicles in satellite video.
Inspired by recent work on WAMI [17] this paper
proposes to exploit the temporal consistency in satel-
lite video by using a neural network and deep learn-
ing instead of using background subtraction or frame
differencing, by this improving over the state-of-the-
art in vehicle detection with satellite video. To over-
come shortage of labelled video, this work follows
in this context the novel idea of transfer learning by
recognising similarity of WAMI and satellite video
data.

To summarise, the contributions of this work are

• the confirmation of results in LaLonde et al. [17]
which shows clearly improvement in vehicle de-
tection (from 0.79 to 0.93 in F1 score) when us-
ing a spatiotemporal convolutional network,

• empirical results showing the applicability of
FoveaNet [17] to reduced resolution (0.91 F1

score for 40% of the original image resolution
and 0.79 F1 score for 20%), yielding sizes of
up to 3.6 × 1.8 px for vehicles which simulates
satellite video and finally,

• a transfer learning approach that uses labelled
WAMI data to train a detector for satellite video
with 0.84 F1 score which is comparable to the
currently best (subspace) method E-LSD[33]
with 0.83 F1 score on the same data.

2. Related Work

Deep learning significantly improved previously
handcrafted methods of object recognition [6]. Neu-
ral networks and back-propagation allow a learning
formalism, where features and inference are jointly
learnt from data in a neat end-to-end framework. Ob-
ject detection is designed either as direct regression
of bounding box image coordinates [24] or by using
the idea of object proposals as intermediate step [25].

These developments triggered also work on deep
learning for object detection in remote sensing [22,
23, 35, 15, 31, 8, 27, 17, 34, 13, 2, 29, 30]. Ap-
plying deep learning for remote sensing is challeng-
ing, as labels are very expensive for satellite data
and good augmentation, transfer learning or even un-
supervised methods circumventing this problem are
currently unknown [38, 20]. Besides deep learning,
object detection in remote sensing can be categorised
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according to the approach taken as well as the sen-
sor modality, i.e. satellite image, sequence of multi-
angular satellite images, satellite video, aerial image
and WAMI.

Applying a classifier on top of a sliding window
is one possible approach. Using a convolutional neu-
ral network in combination with hard negative min-
ing showed by a F1 score of 0.7 reasonable results
with 15 cm GSD on aerial images [15]. Following
the golden standard [25], adapted variants of the base
feature, region proposal and Fast R-CNN network
have been proposed such as using skip connections
in the base and focal loss [31], or using a dilated,
multi-scale VGG16 as base in combination with hard
negative mining [8] which gives AP and Recall larger
than 0.8 in their experiments. Guo et al. [27] intro-
duces proprietary base, region proposal and detection
networks, but did not show results on vehicles. This
approach is useful with aerial images, but fails en-
tirely for 1ṁ GSD video as shown by [34] (F1 score
of 0.5). Results on high resolution satellite images
are still unknown in literature.

Another idea is to pixel-wise classify vehicle vs.
background (semantic segmentation), e.g. by com-
bining Inception and ResNet to give a heatmap. As-
suming a fixed vehicle size and using non-maxima
suppression gives excellent results [23] (F1 score
larger than 0.9). Imbert proposes a generative U-Net
in combination with hard negative mining for satel-
lite images but kept unfortunately results in absolute
F1 scores confidential.

Spatiotemporal information is a further cue impor-
tant in object detection, especially with WAMI and
satellite video. The standard is to use background
subtraction (BGS) [35, 16, 28, 32, 1] and frame dif-
ferencing (FD) [18, 4, 3], except Al-Shakarji et al. [2]
who combined YOLO with spatiotemporal filtering
on WAMI (F1 score of 0.7), and Mou and Zhu [22]
who use KLT tracking on video with a SegNet on
overlapping multispectral data, however, they did not
show results for vehicles. Zhang and Xiang [35] ap-
ply a ResNet classifier trained on CIFAR on propos-
als from a mixture of Gaussians foreground model,
but did not show a proper evaluation.

The standard here is to apply connected compo-
nent analysis [16, 28], saliency analysis, segmenta-
tion [32, 18], distribution fitting [4, 3] followed by
morphology. F1 scores of larger than 0.9 for ships
and scores between 0.6 and 0.8 for vehicles on the
Burji Khalifa [32], Valencia [4, 3] and Las Vegas [16]

videos suggest BGS, FD for larger objects. Both
BGS and FD depend heavily on registration and par-
allax correction, hence, these methods introduce var-
ious nuisances for vehicles which are difficult to han-
dle. Evaluation on single, selective scenes is further
too narrow to draw a final conclusion.

Very recent work [33] suggests a subspace ap-
proach for discriminating vehicles and background.
The idea shows potential with F1 score results of
larger than 0.8 on the simple Las Vegas video, which
therefore needs further evaluation with more com-
plex traffic patterns.

Another problem is the sparsity of vehicle occur-
rences in very large images as in WAMI which has
been tackled by clustering the large images to draw
attention to certain parts of the image and then to
apply convolutional neural networks on single im-
ages [29][30] or multiple video frames [17] for fi-
nal detection. Such clustering combined with deep
spatiotemporal analysis shows excellent results on
WAMI (F1 score larger than 0.9) [17].

Also very recently tracking of airplanes, trains and
vehicles has been considered for satellite video [10,
9, 26, 12], either by using optical flow [10, 9], corre-
lation trackers (KLT) [26] or a combination of corre-
lation and Kalman filters [12].

3. Methodology

With our goal of detecting moving vehicles in
satellite videos, we were inspired by the work of
Lalonde et al. [17], who designed two neural net-
works, denoted as ClusterNet and FoveaNet, to de-
tect vehicles in WAMI. The ClusterNet proposes re-
gions of objects (ROOBI) based on areas of interest
(AOI), which are input to the FoveaNet. Instead of
using the ClusterNet to determine ROOBIs we split
the AOI into square tiles (ROOBIs) with size N×N ;
e.g. N=128 px. The object detection based on the
FoveaNet consists of two steps as depicted in Fig. 2.

3.1. FoveaNet and thresholding

The FoveaNet is a fully convolutional neural net-
work (CNN) and consists of eight convolutional lay-
ers. The number of filters per convolution are 32, 32,
32, 256, 512, 256, 256 and 1. Their filter sizes are
summarized in Tab. 3. After the first convolution a
2×2 max pooling is carried out. Moreover, during
training the 6th and 7th convolutional layers have a
50% dropout. The heatmap is generated by the final
1×1 convolutional layer where each neuron gives a
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PredictionThresholdingHeatmap

FoveaNet

Figure 2. The object detection process consists of two steps [17]: The FoveaNet predicts a heatmap, which indicates the
likelihood that an object is at a given image coordinate. Vehicles are detected by thresholding the heatmap.

vote of the likelihood of a moving vehicle at pixel
level.

The input to the network is a stack of frames with
sizeN×N×c, whereN×N is the ROOBI size and c
depicts the number of consecutive adjoining frames
in a stack. Hereinafter we refer to c as channels.
Thereby, the CNN shall learn to predict the posi-
tions of the objects of the central frame. We believe
the FoveaNet is capable to learn spatiotemporal fea-
tures by feeding the network with stacks of multi-
ple frames (e.g. c=5), which are especially impor-
tant in lower resolution images as existing in satellite
videos.

The ground truth is based on heatmaps H , which
are created by superimposing Gaussian distributions,
where the center of each distribution is the pixel po-
sition (x,y) of the vehicle in the image:

H(x, y) =

N∑

n=1

1

2πσ2
e−

x2+y2

2σ2 (1)

where n are the downsampled ground-truth coor-
dinates provided in pixel positions and σ is the vari-
ance of the Gaussian blur. During training the net-
work learns to minimize the Euclidean distance be-
tween the network output and the generated ground
truth heatmaps.

The original FoveaNet uses ReLUs as activation
functions. We discovered, however, the problem
known as the “Dying ReLU” problem3. During train-
ing, a weight update triggered by a large gradient
flowing through a ReLU can make the neuron inac-
tive. If this happens, the gradient flowing through
this ReLU will always be zero and the network con-
tinues to give the same output. In our trainings
we frequently discovered this phenomenon (∼71%
of the cases) using the Xavier initialization [11].
Hence, we replaced the ReLUs with either ELUs

3http://cs231n.github.io/neural-networks-1, 11/03/2019

(Exponential Linear Unit) or Leaky ReLUs.
The second step processes the predicted heatmap

to determine the objects’ positions. For this, the
heatmaps are converted into segmentation maps via
OTSU thresholding [17]. If the segmented area is
larger than a threshold α, then the center of the area
is defined as the object position.

3.2. Transfer learning

To the best of our knowledge there are cur-
rently no annotated datasets of satellite videos pub-
licly available. In contrast, there are some labeled
WAMI datasets accessible; e.g. the WPAFB dataset4

contains over 160.000 annotated moving vehicles.
WAMI and satellite images, however, differ consid-
erably, among other things due to the different GSD.
For instance, the WPAFB images have about four
times higher GSD than the LasVegas video. Our core
idea is to use transfer learning for a domain transfer
from WAMI to satellite images. For this, we train our
CNN based on the WPAFB dataset. Afterwards we
fine-tune the CNN on satellite video data.

4. Experimental Evaluation and Results

Our network was trained from scratch using Py-
Torch - we used Adam with a learning rate of 1e-
5 and a batch size of 32. Data preparation includes
frame registration to compensate camera motion.

We conducted three experiments. In the first ex-
periment we carry out a baseline evaluation to re-
produce the results of [17]. For the second experi-
ment, we reduce the image resolution (GSD) of the
WPAFB dataset. Thereby, the vehicle size in these
low-resolution images is in the same order as in satel-
lite videos. In the third experiment, we carry out
a fine-tuning and evaluate the FoveaNet on satellite
data.

4https://www.sdms.afrl.af.mil/index.php?collection=wpafb2009,
11/03/2019
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AOI 34 AOI 40 AOI 41

Figure 3. AOI 40 contains a lot of dense traffic passing the intersection. On the contrary, AOI 41 contains mostly single
vehicles driving on the road. Traffic patterns of AOI 34 are a combination of AOI 40 and AOI 41.

Detections are considered true positives if they are
within a certain distance θ of a ground truth coor-
dinate. If multiple detections are within this radius,
the closest one is taken and the rest, if they do not
have any other ground truth coordinates within the
distance θ, are marked as false positives (FP). Any
detections that are not within θ of a ground truth co-
ordinate are also marked as FP. Ground truth coordi-
nates which have no detections within θ are marked
as false negatives. Quantitative results are compared
in terms of precision, recall, and F1 measure.

To compare our results with LaLonde et al. [17]
we selected three of their AOIs (area of interest) - 34,
40 and 41. The contents of the AOIs 40 and 41 with
respect to traffic patterns widely differ as displayed
in Fig. 3. Whereas AOI 40 contains a lot of dense
traffic at a main intersection, AOI 41 mainly consists
of single vehicles on the road. AOI 34 is a combi-
nation of both traffic patterns. Data was split into
training and testing in the following manner: AOI 34
was trained on AOIs 40 and 41. AOI 40 was trained
on AOIs 34 and 41 and AOI 41 was trained on 34
and 40. In contrast to [17], we omitted AOI 42 for
training as it is a sub-region of AOI 41.

For training and evaluation based on the WPAFB
dataset, only frames with moving vehicles were in-
cluded. We excluded frames without moving vehi-
cles as our approach focuses solely on the detection
and omits the region proposal part (ClusterNet) of
[17]. A vehicle is defined as moving if it moves at
least ω pixel within 5 frames.

4.1. Experiment 1: Baseline evaluation

In the first experiment we reproduced the results
in [17]. For this, we set the following parame-
ters: N=100 px (ROOBI edge length), σ=2 (variance
of Gaussian blur), θ=40 px (evaluation threshold),

ω=15 px (threshold for removing stationary cars) and
α=15 px (threshold to disregard small segments).
Tab. 1 indicates that our results are in the same or-
der of magnitude than [17]. For instance, we achieve
a F1 score of 0.90 in AOI 34 (c=5), whereas Lalonde
et al. have a F ∗

1 score of 0.93. The difference in the
results is most likely due to the implementation dif-
ferences of the second step, where we i.a. do not split
connected regions into multiple detections. This pre-
sumption is confirmed looking at the evaluation re-
sults of AOI 40, where the differences of the F1 score
are greatest. AOI 40 contains a lot of dense traffic at
the intersection resulting in connected regions, which
cause false negative detections (Fig. 4). Further-
more, the results in Tab. 1 confirm that the network is
learning spatiotemporal features which improve the
overall performance comparing single versus multi-
channels. For instance, the precision of AOI 34 in-
creases from 0.73 (c=1) to 0.87 (c=5).

(a) (b)

(c) (d)

Figure 4. The detection of vehicles in crowded scenes
is error-prone. Detection results of a ROOBI with re-
duced resolution (SF=0.2): (a) ground truth, (b) pre-
dicted heatmap, (c) after thresholding, (d) detected vehi-
cles (green: true positives, pink: false negatives)
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Table 1. Results are based
on three AOIs of the
WPAFB dataset with
various channel sizes
(c). For comparison, F ∗

1

scores of [17] are provided.
Results of the second
experiment include two
scaling factors - 0.4 and
0.2.

Experiment 1 Experiment 2
Full Resolution Scaling factor 0.4 Scaling factor 0.2

AOI c Prec. Rec. F1 F ∗
1 Prec. Rec. F1 Prec. Rec. F1

34 1 0.73 0.88 0.79 0.55 0.55 0.55 0.39 0.35 0.37
40 1 0.73 0.82 0.77 0.55 0.48 0.51 0.20 0.21 0.20
41 1 0.76 0.90 0.82 0.60 0.72 0.65 0.28 0.42 0.34
34 3 0.86 0.94 0.90 0.93 0.77 0.84 0.80 0.61 0.69
40 3 0.92 0.89 0.90 0.95 0.69 0.80 0.93 0.56 0.70
41 3 0.93 0.93 0.93 0.97 0.84 0.90 0.89 0.69 0.77
34 5 0.87 0.93 0.90 0.93 0.94 0.78 0.85 0.91 0.63 0.74
40 5 0.92 0.89 0.90 0.98 0.96 0.70 0.81 0.90 0.57 0.70
41 5 0.93 0.92 0.93 0.93 0.97 0.85 0.91 0.90 0.70 0.79

4.2. Experiment 2: Downscaled WPAFB dataset

For the second experiment we reduced the im-
ages by a scaling factor (SF) of 0.4 and 0.2 result-
ing in 40% and 20% of the original image resolu-
tion, respectively. We selected a SF of 0.2, because
this factor reduces the typical vehicle object size in
the WPAFB dataset from the order of 18×9 px to
3.6×1.8 px, which is like the vehicle size in satellite
videos. The following parameters were set for the
experiments: SF=0.4 with N=100 px, σ=2, θ=16 px,
ω=6 px, α=15 px and SF=0.2 with N=100 px, σ=1,
θ=8 px, ω=3 px, α=3.5 px. Comparing results of de-
tections based on c=1 (Tab. 1) indicate that the per-
formance significantly decreases with lower image
resolutions; e.g. the F1 score of AOI 40 decreases
from 0.77 to 0.20 (SF=0.2). In contrast, the detection
results significantly improve if the number of chan-
nels is increased. These results confirm our hypoth-
esis that the learned spatiotemporal features are of
great importance for detecting tiny objects such as
vehicles under low resolution.

One of the main problems with low resolution im-
ages is the small distance between neighboring vehi-

Figure 5. Example of the SkySat-1 LasVegas video in
which both AOIs are shown. AOI 1 (400x400 px) is used
for evaluation and AOI 2 (600x400 px) for training. Two
ROOBIs are sketched as yellow dashed rectangles.

cles as displayed in Fig. 4. In this case the FoveaNet
creates a heatmap with a large number of connected
regions, which result in a large number of false nega-
tive detections. To deal with small distances between
neighboring cars we reduced the variance σ of Eq.
1, which improved the detection results. Otherwise,
this issue has not been addressed in this work, al-
though enhancing step 2 of the object detection will
most likely improve the results.

4.3. Experiment 3: Satellite video

The third experiment is conducted to evaluate
the detection performance of the FoveaNet on the
panchromatic satellite SkySat-1 LasVegas video5

consisting of 700 frames, whose GSD is ∼1.0 m and
its frame rate is 30 fps. We defined two AOIs as il-
lustrated in Fig. 5. While AOI 2 is mainly composed
of straight parallel roads, AOI 1 contains addition-
ally a bridge which results in more complex traffic
patterns. The ground truth which was kindly shared
by [33] consists of bounding boxes for moving ve-
hicles. We used the center points of those bound-
ing boxes as ground truth analogous to the WPAFB
ground truth.

For training and evaluation we set θ=8 px, α=4 px,
σ=1, c=5 and N=128 px. Additionally, we set
SF=0.2 and ω=3 px for training the WPAFB dataset.
We observed in this experiment higher efficiency in
training by replacing the ELUs with Leaky ReLUs.

Tab. 2 shows the results of nine individual experi-
ments using FoveaNet with different filter sizes in the
respective convolutional layers (Tab. 3). FoveaNet is
trained on the 80 % reduced WPAFB and directly ap-
plied to the LasVegas video. We observe high recall
(>0.8) but average precision which proves applica-
bility of transfer learning.

5https://www.youtube.com/watch?v=lKNAY5ELUZY
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In contrast to LaLonde et al. [17], we do not ob-
serve large influence of the filter size to the final per-
formance of the network. The argument that large
filter sizes in the first layer are needed for spatial con-
textual information seems to be misleading, as con-
text is introduced in higher layers of a deep network
by the network’s receptive field. We argue that the
filter size depends on the pixel distance of vehicles
in consecutive frames so that the spatiotemporal net-
work can exploit temporal information which is em-
pirically confirmed by our experiments.

We then choose slightly smaller filter sizes
(13-11-9-7-5-3-3-1) for the convolutional layers in
FoveaNet, as this configuration shows best final re-
sults. We fine-tuned the network on AOI 2 which
improved F1 score from 0.55 to 0.84. A qualita-
tive result of this experiment is shown in Fig. 1.
The heat map of the network reconstructs amazingly
well the ground truth. It detects not only cars but
also buses and trucks which the network never saw
before. Three experiments with varying filter sizes
show further that filter sizes have minor influence on
the result. We clearly see that our proposed method
outperforms most methods for vehicle detection in
satellite video except E-LSD[33] which is compara-
ble to our results.

We then performed an experiment where we di-
rectly trained all layers of FoveaNet on AOI 2. Sur-
prisingly, the overall results are only slightly worse
which indicates that the learning problem is not as
complex as for the WPAFB dataset. We conclude
from all observations that FoveaNet learns to de-
tect moving spots by characterising the slope of lin-
ear movement in spacetime which is a much simpler
learning problem as learning spatiotemporal changes
of visual appearance. However, pre-training on
WPAFB is important for the network to generalise
as can be seen in Fig. 6. Without pre-training the
network is in this example not able to detect more
complex motion patterns such as the moving vehicle
on the bridge. It is an open question if such patterns
could be learned by sole data augmentation.

Finally, we performed an experiment where we
studied the effect of the frame rate of videos. Be-
side our baseline of considering every 10th image
frame of the satellite video, we experimented with
every 5th, 15th and 30th (1 fps) video frame. The re-
sults indicate less influence of higher frame rates on
performance. This again supports our hypothesis that
very simple features such as typical slopes of vehicle

Figure 6. From left to right. Top: input image and ground
truth. Middle: estimated and thresholded heatmap,
FoveaNet trained with AOI 2. Bottom: estimated and
thresholded heatmap, FoveaNet after fine-tuning.

trajectories in spacetime are learned by the network.
This presumption needs however further experiments
and insight.

5. Conclusion

This paper considers vehicle detection in satel-
lite video. Vehicle detection in remote sensing is
challenging as the objects usually appear tiny com-
pared to the size of typical aerial and satellite im-
ages and discrimination of objects of interest from
background is frequently ambiguous. Satellite video
is a very new modality introduced 2013 by Skybox
(now Planet) which might overcome the problem by
introducing high temporal resolution. This allows to
exploit temporal consistency of moving vehicles as
inductive bias. Current state-of-the-art methods use
either background subtraction, frame differencing or
subspace learning in video, however, performance is
currently limited (0.26 - 0.82 F1 score).

The method in this paper is motivated by recent
work in WAMI which exploits video in spatiotempo-
ral convolutional networks[17]. We apply FoveaNet
to the domain of satellite video by transfer learn-
ing the network with WPAFB and a small amount
of available labelled video frames of the SkySat-
1 LasVegas video which yields comparable results
(0.84 F1 score). Several ablation studies show mi-
nor influence of the filter sizes in the convolutional
layers and minor influence of the frame rate (tempo-
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WPAFB LasVegas AOI 1 SOTA
Conf. Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 0.56 0.67 0.61 scratch 0.87 0.80 0.83 ViBe[5] 0.58 0.17 0.26
2 0.46 0.76 0.57 fine-tuning GMMv2[39] 0.65 0.27 0.38
3 0.40 0.79 0.53 1 0.84 0.82 0.83 GMM[14] 0.46 0.50 0.48
4 0.42 0.81 0.55 4 0.86 0.82 0.84 Fast-RCNN-LRP[34] 0.58 0.44 0.50
5 0.43 0.85 0.58 9 0.76 0.85 0.80 GoDec[36] 0.95 0.36 0.52
6 0.47 0.80 0.60 skip 5 0.84 0.83 0.84 RPCA-PCP[7] 0.94 0.41 0.57
7 0.46 0.82 0.59 skip 10 0.86 0.82 0.84 Decolor[37] 0.77 0.59 0.67
8 0.46 0.83 0.59 skip 15 0.85 0.81 0.83 LSD[19] 0.87 0.71 0.78
9 0.45 0.70 0.55 skip 30 0.83 0.82 0.83 E-LSD[33] 0.85 0.79 0.82

Table 2. Left: Evaluation results of nine different filter size configurations (see Tab. 3) of the FoveaNet. Middle: Results
of the FoveaNet trained from scratch, fine-tuned with different filter sizes and different fps (conf. 4). Right: Evaluation
results of state-of-the-art (SOTA) methods are presented.

conf. filter size conf. filter size
1 19-17-15-13-11-9-7-1 6 9-7-5-3-3-3-3-1
2 17-15-13-11-9-7-5-1 7 7-5-3-3-3-3-3-1
3 15-13-11-9-7-5-3-1 8 5-3-3-3-3-3-3-1
4 13-11-9-7-5-3-3-1 9 3-3-3-3-3-3-3-1
5 11-9-7-5-3-3-3-1

Table 3. Filter size configurations of the various experi-
ments. Conf. 3 corresponds to the filter sizes suggested
by LaLonde et al. [17].

ral resolution) on the overall result. This indicates a
much simpler learning problem than for the original
high-resolution WAMI data, however, we show that
temporal information is essential for a good detec-
tion performance. Improvements of FoveaNet, e.g.
including the final segmentation of the heat map into
the network, are left for future work.
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Abstract. To decrease patient waiting time for
diagnosis of the Coronary Artery Disease, auto-
matic methods are applied to identify its severity
using Coronary Computed Tomography Angiogra-
phy scans or extracted Multiplanar Reconstruction
(MPR) images, giving doctors a second-opinion on
the priority of each case. The main disadvantage of
previous studies is the lack of large set of data that
could guarantee their reliability. Another limitation
is the usage of handcrafted features requiring man-
ual preprocessing, such as centerline extraction. We
overcome both limitations by applying a different au-
tomated approach based on ShuffleNet V2 network
architecture and testing it on the proposed collected
dataset of MPR images, which is bigger than any
other used in this field before. We also omit cen-
terline extraction step and train and test our model
using whole curved MPR images of 708 and 105 pa-
tients, respectively. The model predicts one of three
classes: ‘no stenosis’ for normal, ‘non-significant’
— 1-50% of stenosis detected, ‘significant’ — more
than 50% of stenosis. We demonstrate model’s in-
terpretability through visualization of the most im-
portant features selected by the network. For steno-
sis score classification, the method shows improved
performance comparing to previous works, achiev-
ing 80% accuracy on the patient level. Our code1 is
publicly available.

1. Introduction

According to the American Heart Association re-
port [2], approximately 17.6 million deaths were at-
tributed to Cardiovascular Diseases (CVD) globally
in 2016, making it the leading cause of death in

1https://github.com/ucuapps/
CoronaryArteryStenosisScoreClassification/

Figure 1: The pipeline of stenosis classification on
an MPR image. For each 2D image, ShuffleNet V2
predicts probabilities of stenosis score. Activation
regions of the last layer in the model are shown and
overimposed on the input image.

the world. By 2030 it is estimated that CVD will
be responsible for over 23.6 million deaths [2], and
thus the ability to get early diagnosis becomes cru-
cial. Cardiovascular diseases affect the heart or blood
vessels. They include Coronary Heart Disease, or
Coronary Artery Disease (CAD), which occurs when
plaque (a combination of cholesterol, calcium, fat
and other substances) builds up in the arteries and
clogs them. This narrowing of the arteries, called
stenosis, interferes in the healhy blood flow by hin-
dering oxygen-rich blood cells transportation to the
heart.

Coronary Computed Tomography Angiography
(CCTA) is one of the components used by radiolo-
gists in diagnostics of the coronary artery disease.
In the recent studies, CCTA was proven to be clin-
ically effective in combination with functional test-
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ing (SCOT-HEART [1]), or even as an alternative to
it (PROMISE [7]). Coronary CTA helps doctors in
evaluation of the degree of artery stenosis. For pa-
tients in the risk group, it is vital to get the diagnosis
in a short period of time, however, nowadays it takes
up to two weeks to receive analysis results after the
scanning procedure. In order to decrease the waiting
time, the previous works [12], [22] applied various
semi-automated algorithms to identify the severity of
disease in medical images, giving doctors a second-
opinion on the priority of each case. Such automated
computer-aided systems are capable to increase the
access to diagnostics and eventually reduce mortal-
ity by faster recognition of critical cases.

Due to recent advances in applications of machine
learning to medical domain, it is now possible to
use neural networks for assessment of the severity
of coronary artery stenosis. Among the main disad-
vantages of previous approaches are the lack of large
set of data that could guarantee their reliability and
usage of handcrafted features during the preprocess-
ing steps. Our contribution to this field lies in ap-
plication of a different approach and testing it on the
created dataset, which is bigger than any other used
in this field before. We also propose a fully auto-
mated method to classify stenosis score, that utilizes
whole curved Multiplanar Reconstruction (MPR) im-
ages without manual preprocessing or centerline ex-
traction, see Figure 1.

2. Related Works

The problem of stenosis score classification on
CCTA images of coronary arteries is insufficiently
studied. The major difficulty is the absence of pub-
licly available structured and professionally labeled
sets of data. Another one is domain specificity, which
requires certain expertise in analysing medical data.

Datasets of coronary arteries are usually formed
by CCTA scans, from which MPR images can be ex-
tracted and transformed to either straight or curved
representation of arteries. In the related paper [3],
CCTA scans of only 163 patients were collected, and
the proposed network was trained and tested using
images of 98 and 65 patients, respectively. The au-
thors first straightened MPR images by applying the
centerline extraction technique [20] and then used the
transformed data to simplify classification of steno-
sis level. The centerline extraction step used in
this approach requires manual placement of a sin-
gle seed point in the artery of interest, so that the

method is not fully automated. 3D convolutional
neural network was utilized to extract features which
are used by recurrent neural network for classifica-
tion. While the achieved accuracy shows good per-
formance and feasibility of deep learning methods
for stenosis score classification, the reliability of ob-
tained results can not be justified on such small data
sample. Another drawback is its poor stability: as the
authors admit, even small errors in centerline extrac-
tion may essentially increase the overall error.

Centerline extraction is a common preprocessing
method [15] although it often requires manual assis-
tance. It is used in the previous study [22], where
user interaction is needed to localize the artery by
annotating the start and end points of the vessel.
As the authors described, the start point was placed
in the coronary ostium of the corresponding arterial
tree and the end point was placed at the most dis-
tal point inside the vessel. Some parameters were
chosen manually, for example, contrast filled (fore-
ground) regions are defined by empirically determin-
ing a lower and upper bound values of intensity.
Other handcrafted features include the mean and dis-
persion values of the artery radius, as well as the
mean and dispersion of a rotation angle correspond-
ing to a typical location of the artery.

In order to avoid errors caused by centerline ex-
traction, in our approach we use curved MPR im-
ages instead. These MPRs are generated from CCTA
with the help of radiologist assistant during a general
pipeline of the coronary artery diagnosis. Thus, our
method does not require any handcrafted features,
but utilizes the whole MPR image, where artery is
curved.

3. Data

For training our algorithms, we used curved MPR
images of the coronary artery with stenosis levels
annotated by professional radiologists from a well-
renowned Future Medical Imaging Group (FMIG) in
Australia. Our current dataset consists of 160,000
MPR images which were extracted from CCTA scans
of 828 unique patients; see data statistics in Table 1.

3.1. MPR generation process

The CCTA stack of images representing the pa-
tient’s heart, is produced by the CT scanner. The raw
CT scans require thorough and long analysis as the
coronary artery is represented in each slice as a small
circular region, similar to a dot. To increase the in-
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Figure 2: Prediction process. First, the whole CCTA is converted into sets of MPR images for each artery
branch (completed by a radiologist assistant). Then, our method automatically cleans the image from the text
and meta information, and feeds the obtained preprocessed images to the ShuffleNet V2. As an output, the
probability predictions of each class are produced.

Arteries Arteries Sections Sections

LAD 824 LAD 822
D-1 729
D-2 356
D-3 68

LCX 722 LCX 639
PLV-LCX 15
PDA-LCX 17

RCA 721 RCA 91
OM 6
OM-1 81
OM-2 281
OM-3 75
PLV-RCA 609
PDA-RCA 71

Table 1: Collected dataset statistics. Number of
cases containing certain arteries and branches for all
828 patients.

terpretability of the data, the clinicians use the MPR
technique [10, 5]. MPR is the process of using the
data from axial CT images to create a more anatom-
ical representation of the coronary artery by tracking
the whole specific artery branch along the CT volume
and generating its two-dimensional image.

Each branch is represented by 50 MPR images,
where one image corresponds to the specific view an-
gle (180 degrees in total). The reason for that is that
plaque might be located anywhere along the vessel,
and be invisible only from some view angles.

3.2. Labels extraction from medical reports

The condition of coronary artery of each patient is
described by the report. It contains the meta informa-
tion about the person (age, gender, heart rate, etc.),
characterization of stenosis score, type of the plaque

and calcium score to all artery sections and branches.
The raw reports are not suitable for training classi-
fication machine learning algorithms as they do not
have any specific category attached to the particular
image or at least to a stack of images.

We created the parsing pipeline, which takes the
report of the patient as an input and extracts all in-
formation relevant to our task. The parsed data in-
clude the description of all important artery sections
and branches with corresponding stenosis categories.
The latter are grouped according to the standard de-
fined by the Society of Cardiovascular Computed To-
mography (SCCT) and Coronary Artery Disease -
Reporting and Data System (CAD-RADS) [4]: 0% -
Normal, 1-24% - Minimal stenosis or plaque with no
stenosis, 25-49% Mild stenosis, 50-69% - Moderate
stenosis, 70-99% - Severe stenosis, 100% - Total Oc-
clusion. In the reports, three main artery sections are
presented: LAD (Left Anterior Descending Artery)
with D-1, D-2, D-3 branches; RCA (Right Coronary
Artery) with PDA-RCA, PLV-RCA branches; LCx
(Left Circumflex Artery) with OM-1, OM-2, OM-3,
LCx-PDA, LCx-PLV branches.

3.3. Data labeling process

Specific recommendation for further patient treat-
ment depends largely on the identified level of steno-
sis [4]. No further cardiac investigation is required
unless moderate (50-69%) or higher stage was re-
ported. Preventive therapy and risk factor modifica-
tion is suggested for minimal or mild stenosis. Due to
these specific regulations, we assign one of the three
classes for each MPR image: ‘no stenosis’ for nor-
mal cases, ‘non-significant’ — 1-50% of stenosis de-
tected, ‘significant’ — critical cases where more than
50% of stenosis is present and instant doctor’s atten-
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tion is required.

3.4. Challenges in the dataset

After all described preprocessing steps, we ob-
tained a structured labeled dataset, but it is still in-
complete and contains noise. One of the main issues
is the appearance of several branches on the same im-
age, see example in Figure 3 (b). This increases the
risk of mislabeled data as each set of images repre-
senting one branch has just one label, which is then
assigned to every single image in the set. For exam-
ple, for the healthy LAD branch all the 50 images re-
trieved from different viewpoint angles are labeled as
being normal. However, if on some of those images a
neighbouring vessel (e.g., LCx) with over 50% score
of stenosis is partly present, then the model may de-
tect stenosis and misclassify a healthy LAD.

Figure 3: Examples of difficult images. Exam-
ples of the hard cases which are present in collected
dataset. (a) The amount of pixels responsible for re-
gion of stenosis is many times smaller than the entire
sample. (b) While the label for one MPR image cor-
responds to only one artery segment, several of them
might be present on the image. (c) Physically natural
narrowing can be visually similar to stenosis called
myocardial bridging. (d) Example of artery with in-
serted stent, which can be mistakenly classified as
stenosis with plaques.

Another issue is an inconsistency between medi-
cal reports written by doctors and the labeling sys-

tem prescribed by CAD-RADS. The problem arises
when the annotation provided by a radiologist is on
the borderline between two classes from the CAD-
RADS system. For example, the doctor might mark
a specific branch by a "50%" of the stenosis. While
it is satisfactory in medical terms, it becomes a chal-
lenge for us to choose which group this annotation
belongs to - whether it should be considered as a sig-
nificant or non-significant case.

Also we pre-process MPR images before infer-
ence. Each MPR image contains text information
(meta-information about the picture), which has the
highest intensity on the image. We remove it by as-
signing the average intensity of the neighbor pixels.
Other examples of data challenges and difficulties are
represented in Figure 3.

4. Experiments

4.1. General pipeline

We took 708 unique patients for training, 15 for
validation and 105 for testing. We include the MPR
images of every coronary artery and its branches
described in Subsection 3.2 in training and testing
phases.

We fed the MPR images into an optimized net-
work architecture ShuffleNet V2. Each branch of the
artery in most of the cases is represented by 50 MPR
images (see Subsection 3.1). Thus for one branch, we
get 50 predictions describing its stenosis score. Then
using the majority rule, we assign the final stenosis
score for the branch. The prediction pipeline is il-
lustrated in Figure 2, and it is followed by evaluation
technique, shown in Figure 4.

4.2. Methodology

The technique which is widely used for optimiz-
ing the neural network architectures is 1x1 convolu-
tion. The authors of ShuffleNet [21] approached it
and managed to reduce the time for this operation.
The main idea behind ShuffleNet was to use sepa-
rable depthwise convolutions [3], grouped convolu-
tions on 1x1 convolution layers - pointwise group,
followed by channel shuffle operation. In this pa-
per, we use an improved version of this architecture -
ShuffleNet V2 [14], which is not only faster, but also
more accurate.

We use ShuffleNet V2, pretrained on ImageNet
[6], to extract features from curved MPR images and
classify them into three classes: ‘no stenosis’, ‘non-
significant stenosis’, ‘significant stenosis’.
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Figure 4: Evaluation process. The performance of proposed method is evaluated as suggested in [19] on
segment-, artery- and patient-levels using F1 score and accuracy. For each image, we predict one of the three
classes, and then assign the class for the segment (branch) by applying the majority rule to all 50 images
corresponding to it. The maximal (most critical) class of all of the branches from one artery is assigned to this
artery. The final prediction is calculated for each patient by choosing the maximal class out of all patient’s
arteries.

The structure of the basic building block of Shuf-
fleNet V2 [14] with residual is displayed in Fig-
ure 5. There are several building blocks which are
stacked to construct the network. The input of fea-
ture channels is split into two branches at the begin-
ning. In each block one branch directly goes through
the block and joins the next one. The other branch
has three convolution layers with the same input and
output channels. Only one from the three 1x1 convo-
lutions is group-wise. The two branches are concate-
nated after convolutions. For spatial downsampling
the block is modified by the removal of split opera-
tor. The Channel Shuffle improves accuracy by en-
abling information communication between different
groups of channels.

We trained the model on our dataset using Adam
optimizer [11] with 10−4 learning rate. We chose
the best value of learning rate for our model using
LR Range Test [17]. It is a method that implies run-
ning the model for a few iterations with initially very
small learning rate and then increasing it linearly be-
tween low and high learning rate values after each
epoch. This allows to estimate the minimum and
maximum boundary learning rates. The gradient ac-
cumulation and batch normalization [9, 8] were used
to increase the batch size and provide a better direc-
tion towards a minimum of the loss function.

To introduce robustness properties and desired in-
variance in our model, we employed standard data
augmentation techniques. In the case of MPR im-
ages, we primarily need a scale, rotate, blur, bright-

ness, and transpose invariance.

4.3. Evaluation metrics

The CAD-RADS classification is applied on a
per-patient basis and represents the highest grade
of stenosis from the coronary tree [19]. Taking
this into account, we evaluate our method perfor-

Figure 5: Structure of the basic building block of
ShuffleNet V2 with residual [14]. CONV: convolu-
tion layer. DWCONV: depthwise convolution. BN:
batch normalization. Channel Shuffle: crucial opera-
tion for ShuffleNet architectures.
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mance on segment-, artery- and patient-levels, and
define stenosis score according to the maximum
value found at the current level. On the artery level,
the highest grade of stenosis is selected out of all the
grades on segments. On the patient level, the max-
imal stenosis stage is chosen among all the arteries.
The accuracy and F1 score for multiclass classifica-
tion are computed on each level.

We apply weighted averaging for F1 score mea-
sure because we deal with multiclass labels. For
each label metrics are calculated and then average
weighted by the number of true instances for each
class:

3

∑
i=1

F1(classi)∗Wi

where i - iterator over the 3 classes, F1 is F1 −
score and W - weight for the current class .

Results Accuracy F1 score

Our RNN-based[22] Our RNN-based[22]
Segment-level 0.81 0.80 0.81 0.75
Artery-level 0.81 0.76 0.82 0.77
Patient-level 0.80 0.75 0.80 0.75

Table 2: Accuracy and F1 score on test sets: 105 pa-
tients (approximately 25,000 MPR images in total)
in our test, 65 patients in Zreik et al.[22]

The final results and comparison to previous study
are reported in Table 2. We also display confu-
sion matrices in Table 3 for every level separately
in order to show results across the classes. This al-
lows to observe the model’s sensitivity (True Positive
rate) - cases where the model correctly predicts the
positive class, and specificity (True Negative rate) -
cases where the model correctly predicts the negative
class. For medical problems the False Positive error
is always less dangerous than False Negative, these
metrics are shown on confusion matrices. None of
the patients with significant stenosis were classified
as having no stenosis, and none of the healthy pa-
tients were put in the significant stenosis category.
The model makes mistakes between ‘no stenosis’ and
‘non-significant’ classes, as well as between ‘non-
significant’ and ‘significant’, which could be caused
by the noise in data (see Figure 3) and weak labels.

4.4. Results interpretability

In order to achieve model interpretability we use
Captum [13] library containing implemented meth-

Predicted
Segment level No stenosis Non-Significant Significant

A
ct

ua
l No stenosis 0.92 0.07 0.01

Non-Significant 0.32 0.6 0.08
Significant 0.18 0.26 0.55

Predicted
Artery level No stenosis Non-Significant Significant

A
ct

ua
l No stenosis 0.91 0.08 0.01

Non-Significant 0.24 0.67 0.09
Significant 0.13 0.26 0.61

Predicted
Patient level No stenosis Non-Significant Significant

A
ct

ua
l No stenosis 0.81 0.19 0.00

Non-Significant 0.07 0.80 0.13
Significant 0.00 0.21 0.79

Table 3: Confusion matrices. For each level: seg-
ment, artery and patient we calculate confusion ma-
trix to see the number of False Positives, False Neg-
atives and compare them.

ods that identify which training features are impor-
tant for the model. We visualized the features from
the last layer of our model to understand which im-
age regions have the largest impact on the model.
The attribution of the network prediction to its in-
put features was performed by applying axiomatic
attribution method – Integrated Gradients [18] imple-
mented in Captum [13]. In this approach, the integral
of the gradients of the output prediction for the speci-
fied class is computed with respect to the input image
pixels. We observe that for all types of arteries and
all levels of stenosis the model pays attention mostly
to the artery zone, while the background with noise
does not play a role in classification. Some exam-
ples of the features visualization using heatmaps are
shown in Figure 8. It is noticeable that for images
which contain stenosis, model is more confident in
the regions where plaques are located. This demon-
strates model reliability, since plaques presence di-
rectly correlates with stenosis.

Although our model is capable of handling the
background noise information and mainly takes into
account only relevant areas, there are some corner
cases. One of the most common types of plaque is
calcified plaque. In computed tomography scans, it
is represented as the pixels with a high level of in-
tensity. There are structures and tissues like calcified
ribs, sternum, costal cartilages, ventricle walls, etc.,
which are in the same range of radiodensity. The
visualization showed that our models pay attention
to these regions and associate them with the stenosis
presence, which causes the lower specificity of our
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Figure 6: Prediction for one segment. The particular example has 25% of stenosis in LAD artery. The labels
for all 50 images representing this segment are the same - ‘non-significant’. While it is true for some of the
MPR view points (see two images at the bottom left), from most of the angles stenosis is not seen either by
a human eye, nor by a model (see two images at the bottom right). Thus, it is a direct illustration of weak
labeling. It is important to treat every segment as a set of 50 images which are related.

algorithms (see Figure 7).

Figure 7: Visualization of the model’s confusion.
Scans with the structures, which are similar to the
calcified plaque. (a) The anomaly, with the high level
intensity pixels. (b) Calcified ribs, which caused the
model confusion.

5. Conclusion

We propose a simple automated framework, which
is capable of detecting the stenosis score in curved
MPR images. Our method shows improvements over

the previous results [22] reporting 80% accuracy for
the multiclass classification of stenosis level.

Our main contribution lies in creating new dataset
of Cardiac CT scans of more than 800 patients, which
is larger than any previous dataset, and suggest-
ing a new approach for stenosis level classification.
The proposed method omits centerline extraction and
does not require any handcrafted features. Further-
more, we obtain explainable results and display fea-
tures which impacted network’s decisions.

The model interpretability through visualization
of feature importance is very helpful in medical
imaging as radiology specialists may use it to build
trust in the model’s predictions, refine classification
of borderline cases, as well as gather observations for
future testing.

6. Discussion

There are several ways to improve our approach.
The curved MPR images, which were used as in-
put in this work, contain not only artery, but also the
background, where there is no useful information for
determining the level of stenosis. We believe that the
results of the proposed approach can be improved by
using segmentation as an additional step during pre-
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Figure 8: Visualizations of the last layer’s most important features for correctly predicted cases. These
were created by using Integrated Gradients [18]. Each class is represented for three examples of Left Anterior
Descending artery: significant, non-significant, no stenosis. Top: The input two-dimensional MPR images of
three different patients generated from CCTA scans. Bottom: The gradient visualization of most impactful
features for the model. The brighter the pixels are, the more importance they have in prediction.

processing and feeding the network with segmented
images, where only the artery region is present.

Taking into account the problems shown on Fig-
ure 7, we might improve the performance of our
models by adding the attention gate [16] to the cur-
rent network architecture. It will automatically learn
the relevant areas for our task and suppress the unre-
lated target structures.

To obtain the final stenosis score for one branch,
we take 50 predictions of our network for each corre-
sponding MPR image representing the artery and as-
sign the prevailing class. With this approach, we do
not take into account the spatial relationship between
MPR images. One possible improvement might be
to apply the 3D CNNs to catch patterns across three
spatial dimensions. One of the options to skip the
step of MPR extraction is to create a new method,
which would directly use 3D images of CCTA for
stenosis score classification.

Due to the difficulty in collecting reliable labels
for medical data, unsupervised or weakly-supervised
approaches should be considered. We believe that
one of the possible ways of implementing such a so-

lution is to train autoencoder exclusively on normal
images with noise, then, to decide whether the par-
ticular MPR image represents the normal case based
on its distance to the corresponding image generated
by the model.

The other area for research is the extraction of
MPR images from CCTA. This task is handled semi-
manually by a radiologist at the clinics, therefore, it
is costly and takes long time. Our dataset already
contains extracted MPR data. We think this pro-
cess can be simplified by application of deep learning
in building multiplanar reconstruction images based
only on data from CCTA scans.
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Rogaška Slatina, Slovenia, February 3–5, 2020

Towards Data-driven Multi-target Tracking for Autonomous Driving

Christian Fruhwirth-Reisinger, Georg Krispel, Horst Possegger, Horst Bischof
Graz University of Technology

Institute of Computer Graphics and Vision
{christian.reisinger, georg.krispel, possegger, bischof}@icg.tugraz.at

Abstract. We investigate the potential of recurrent
neural networks (RNNs) to improve traditional on-
line multi-target tracking of traffic participants from
an ego-vehicle perspective. To this end, we build
a modular tracking framework, based on interact-
ing multiple models (IMM) and unscented Kalman
filters (UKF). Following the tracking-by-detection
paradigm, we leverage geometric target properties
provided by publicly available 3D object detectors.
We then train and integrate two RNNs: A state pre-
diction network replaces hand-crafted motion mod-
els in our filters and a data association network finds
detection-to-track assignment probabilities. In our
extensive evaluation on the publicly available KITTI
dataset we show that our trained models achieve
competitive results and are significantly more robust
in the case of unreliable object detections.

1. Introduction

Multi-target tracking (MTT) aims at jointly esti-
mating the number of targets and their current states
from a sequence of unreliable measurements. It is
one of the fundamental visual perception tasks for
autonomous driving (AD) [21] which allows, for ex-
ample, reactive navigation or motion planing.

In this work, we address the problem of track-
ing robustness despite unreliable detections, which
strongly degrade tracking performance. This re-
quires, on the one hand, precise state predictions
for frames without proper detections and, on the
other hand, reasonable track-to-detection assign-
ments. Hence, we train and integrate two recurrent
neural networks (RNNs) for these purposes, as illus-
trated in Fig. 1. The advantage as shown in our eval-
uations is that data-driven models generalize better
on numerous different situations.

Most recent online multi-target tracking ap-
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State
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Track
Management

x̂t|t−1ẑt|t−1

Updated
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Motion ModelMeasurement Model
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(Detections)

Target
Tracks

Measurements without assignment

Figure 1. Tracking-by-detection scheme. We exchange
the highlighted modules (i.e. State Prediction and Data
Association) with data-driven recurrent neural networks.

proaches, e.g. [16, 30, 44, 50] follow the tracking-by-
detection paradigm and thus, assume a detected set of
possible targets in each frame. For AD, these detec-
tions are usually obtained from state-of-the-art object
detectors [29, 39, 45] which estimate 3D bounding
boxes from LiDAR data or RGB images.

Simultaneously tracking multiple targets is
commonly handled by applying a single target
tracker (STT) for each object instance, realized by
probabilistic filters [1, 6]. These filters predict the
current state usually relying on hand-crafted motion
models and update the predictions with assigned
detections to estimate the posterior distribution of
each track. A data association step assigns the most
reasonable detection to each track and consequently
allows the filter updates. Finally, MTT requires track
management to initialize and terminate trajectories.

Hence, the main challenges in multi-target track-
ing are the assignment of detections to tracks and de-
termining whether a track exists or not. The former
strongly depends on the detection quality. Many false
positive (FP) or false negative (FN, i.e. missed) de-
tections require additional knowledge of the tracked
targets, e.g. their motion behavior, to produce a
reasonable trajectory. Additionally, targets at high
speed, moving sensors and interacting targets hamper
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accurate associations. The question whether a track
exists or not, on the other hand, is even harder to an-
swer. Occluded targets and false detections can lead
to missing or wrongly initialized tracks, respectively.

Our main contribution is to investigate several
tracking aspects for AD within a combined Bayesian
filter-based MTT framework. To track traffic partici-
pants in 3D world coordinates, we leverage the inter-
acting multiple model (IMM) [8] approach combined
with an unscented Kalman filter (UKF) [23, 47], to
allow multiple, potentially non-linear motion mod-
els. For our investigation, we focus on two tasks:
State prediction and data association. We exchange
these traditionally hand-crafted parts with learned
RNN models and evaluate their impact on the KITTI
dataset [17]. Our experiments demonstrate that our
data-driven models significantly improve the track-
ing performance, especially in the case of unreliable
or missing detections. Furthermore, in contrast to
most recent works which focus exclusively on well-
represented object classes (i.e. cars and pedestrians),
we consider all available object classes. This allows
more meaningful conclusions about the tracking ca-
pabilities for real-world AD scenarios.

2. Related Work

Because of the large diversity of tracking meth-
ods, we focus mainly on online filtering-based and
deep learning approaches which have been proposed
for traffic scenarios. For a more extensive survey
we refer the interested reader to the recent works of
Krebs et al. [27] and Vo et al. [46].

Bayesian Filtering: Most MTT algorithms follow-
ing the tracking-by-detection paradigm are modeled
as parallel STT approaches joined by a data associa-
tion step. However, even for the simple case of a sin-
gle target, well-known filtering approaches, e.g. lin-
ear Kalman filter (KF) [24] or UKF, can not be ap-
plied directly [46]. The reason for this are detection
origin uncertainties, FP and FN detections.

A simple solution to this problem is the nearest
neighbor (NN) filter [3, 9], which uses the closest
detection in terms of spatial distance to each pre-
dicted state, e.g. [1]. However, such a setup is prone
to lose tracks in case of wrong detection-to-track as-
signments due to FPs and FNs. An improved ver-
sion is the probabilistic data association (PDA) fil-
ter [2, 4]. It uses assignment probabilities of certain
detections in each frame and applies the state estima-
tion filter with weighted detections to all targets in-

dividually [3, 46]. This improves the results in clut-
tered environments. However, both filters, NN and
PDA, are designed for STT and should be used in
MTT problems with clearly separable targets only.

In contrast to this local data assocation, global
strategies consider all detections and tracked targets
in every frame. The most common approaches are
global nearest neighbor (GNN) and joint probabilis-
tic data association (JPDA) [15]. While the former
solves a minimization problem on given costs w.r.t.
distance, intersection over union (IoU) or likelihood,
the latter is an extension to the PDA filter. It performs
a weighted update including all detections within
a certain gating region simultaneously regarding all
tracks. For example, Choi et al. [10] combined GNN
association with a linear KF. Their association crite-
rion is based on a weighted sum of target distance
and size. In contrast, Sharma et al. [44] proposed a
tracker without filtering which solves the association
problem via the Hungarian [37] algorithm. They de-
vised several costs from 3D cues, which are directly
learned from monocular images.

Commonly used filtering approaches typically
employ a single linear motion model, e.g. constant
velocity (CV). However, traffic participants do not
always act in a linear way. Hence, the interact-
ing multiple model (IMM) [8] approach enables
switching various models representing different mo-
tion patterns. This includes, for example, the coor-
dinated turn modeled by the constant turn rate ve-
locity (CTRV) model and static or slow movement
modeled by the random model [31]. Rachman [40]
proposed a tracker for traffic scenarios based on un-
scented Kalman filtering with an IMM and JPDA,
which inspired our baseline MTT framework. How-
ever, his evaluation is restricted to a specific environ-
mental scenario with few selected KITTI sequences
and thus, complicates deducing insights on the gen-
eral applicability for autonomous driving.

The main drawback of these approaches is the
missing ability to handle a variable number of tracks.
Stacking all tracks in a single state vector, on the one
hand, restricts trackers to a fixed number of targets.
Initiating a new filter for each target, on the other
hand, requires an external track management. Alter-
natively, the multiple hypothesis tracker (MHT) [7,
41] builds hypotheses for all track-to-measurement
assignments over time including the possibility of
initiating and terminating tracks. However, the com-
plexity of MHT grows exponentially with each time
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step, which requires complexity reduction, e.g. via
hypothesis pruning or track merging [11, 12, 25].

Sequential Monte Carlo (SMC) methods [14, 13,
36], like the particle filter [18, 34] can also be directly
used for state estimation. This filter usually performs
better in non-linear/non-Gaussian environments be-
cause it approximates the posterior PDF by a finite
set of particles. One drawback of these approaches,
however, is the high computational complexity.

Deep Learning: A more recent research direction
is to leverage deep neural networks (DNNs) for MTT.
They have gained a lot of attention within the last
years because of their impressive performance in
many computer vision challenges, especially object
detection and classification [28].

Despite the fact that AD requires tracking in 3D
world coordinates because vehicles depend on spa-
tial information, a lot of tracking approaches are de-
signed and evaluated in the image space. Sharma et
al. [44], for example, leverage 2D and 3D cues from
monocular images to perform tracking in the 2D im-
age space. Another 2D approach was proposed by
Gündüz and Acarman [19]. They exploit image fea-
tures to find similarities between consecutive frames.
In contrast, Zhang et al. [50] used 3D information
from point clouds fused with image features even
though they perform tracking in 2D.

On the other hand, one way to track in 3D world
coordinates from monocular images only, is to esti-
mate the distances between ego-vehicle and detected
targets [42]. End-to-end trainable models using 3D
LiDAR data [33] and additional RGB images [16]
were also proposed. Hu et al. [20] estimate 3D
bounding boxes from a sequence of images and track
them with a trained long short-term memory (LSTM)
network. A universal tracking approach based on
RNNs was proposed by Milan et al. [35]. Their end-
to-end trainable network represents equal structures
like well-known Bayesian filters and processes sim-
ple bounding box inputs.

In contrast to these, we leverage the best of both
worlds, i.e. combining learned motion/association
models and well understood filtering techniques.

3. Multiple Object Tracker

Given a sequence of noisy 3D bounding boxes,
we want to track all objects of interest trough time.
Each target is represented by its current state which
is modeled by a random variable. Such a task can
be seen as a dynamic state estimation problem. For

Figure 2. Sensor model [17] with ego-vehicle in black and
an exemplary target car in green.

this purpose, we model a single tracker for each tar-
get with the state-space approach which allows state
estimation from noisy detections. Thus, a dynamical
model describes the state transition over time and a
measurement model relates detections to the state.

A well-developed framework for this problem is
the Bayesian filter for which computational traceable
solutions (i.e. KF, UKF) exist. It can be applied in
a recursive manner to handle incoming detections
for each time frame which is crucial for an online
tracker. In the following we discuss the specific com-
bination of such filters we exploit for target tracking.
Additionally, we replace parts of the filters/trackers
with data-driven RNN models.

3.1. Bayesian Tracking Framework

Representations: Object detections are repre-
sented by 3D bounding boxes, relative to the ego-
vehicle’s center coordinates x, y, z as illustrated in
Fig. 2.

We further define the state vector at time t as
xt = (post, ωt, vt, ω̇t, bbt, ϕt)

T , where post denotes
the center coordinates xt, yt and zt, bbt denotes the
bounding box dimension, i.e. width wt, length lt and
height ht, and ϕt denotes the bounding box orien-
tation. Additionally, the state vector contains non-
observable parameters: Steering angle ωt, velocity vt
and turn rate ω̇t. Notice, we use different parameters
for steering angle and bounding box orientation to
support scenarios where ego-motion measurements
are not available.

The measurement vector zt contains observable
parameters which can be obtained from the object de-
tector at time t, i.e. zt = (xt, yt, zt, wt, lt, ht, ϕt)

T .

Unscented Kalman Filter (UKF): is a compu-
tationally tractable solution of the Bayesian filter
which allows non-linear dynamical models. The
main idea of the UKF is to propagate a fixed num-
ber of appropriately chosen weighted sample points
– so-called sigma points – through a non-linear func-
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tion by using the Unscented Transformation (UT).
This process does not need an analytical derivation
of dynamic and measurement functions. We leverage
the scaled UT [22] which ensures a positive semi-
definite covariance matrix.

Thus, we first need to determine 2n + 1 sigma
points Xi,t−1 ∈ Rn with i ∈ {0, . . . , 2n} for n
state variables, weights w(m) ∈ Rn for state mean
x̂t−1|t−1, and weights w(c) ∈ Rn for the state co-
variance matrix P̂t−1|t−1. These weights depend on
the scaling factor λ = α2(n + κ) − n, where α
controls the spread of the sigma points around the
mean. The remaining parameters κ and β represent
another scaling and prior knowledge about the state
distribution, respectively. To avoid sampling non-
local effects under strong nonlinearities, the param-
eter should be 0 ≤ α ≤ 1. Furthermore, positive
semi-definiteness can be guaranteed by choosing the
parameter κ ≥ 0. A typically good choice for state
estimation problems is κ = 0. Finally, for Gaussian
distributions β = 2 is optimal, otherwise it should be
non-negative.

We further use the scaling parameters to sam-
ple scaled sigma points Xi,t−1 ∈ Rn with i ∈
{0, . . . , 2n} as in [22] from the previous posterior
state x̂t−1|t−1 and covariance Pt−1|t−1. Afterwards,
we propagate the sigma points through a potentially
non-linear function f(·) representing the dynamic
model and use the propagated sigma points

Xi,t|t−1 = f(Xi,t−1) ∀i ∈ {0, . . . , 2n}, (1)

to calculate the predicted mean x̂t|t−1 and covariance
Pt|t−1 as

x̂t|t−1 =

2n∑

i=0

w
(m)
i Xi,t|t−1, and (2a)

Pt|t−1 =
2n∑

i=0

w
(c)
i vT

x v
T
x + Qt, (2b)

with innovation vx =
(
Xi,t|t−1 − x̂t|t−1

)
and pro-

cess noise covariance matrix Qt ∈ Rn×n.
The update step requires a new set of 2n+1 sigma

points Xi,t ∈ Rn with i ∈ {0, . . . , 2n} for n state
variables and weights for predicted state mean x̂t|t−1
and corresponding covariance matrix P̂t|t−1. After-
wards, we propagate these sigma points through the
measurement function h(·)

Zi,t|t−1 = h (Xi,t) ∀i ∈ {0, . . . , 2n}, (3)

and build a weighted sum to obtain predicted a priori
measurements ẑt|t−1, the corresponding innovation

covariance matrix St and the cross covariance Ct as

ẑt|t−1 =

2n∑

i=0

w
(m)
i Zi,t|t−1, and (4a)

St =

2n∑

i=0

w
(c)
i vzv

T
z + Rt, and (4b)

Ct =
2n∑

i=0

w
(c)
i

(
Xi,t|t−1 − x̂t|t−1

)
vT
z , (4c)

with innovation vz =
(
Zi,t|t−1 − ẑt|t−1

)
and mea-

surement noise covariance matrix Rt ∈ Rq×q.
Finally, we compute the posterior mean x̂t|t and

covariance matrix Pt|t as

x̂t|t = x̂t|t−1 + CtS
−1
t (zt − ẑt|t−1), and (5a)

Pt|t = Pt|t−1 −CtS
−1
t CT

t . (5b)

Interacting Multiple Model: The original UKF
implementation supports only a single dynamic
model which is often also referred to as motion
model. Mostly, a single model is not able to cover the
motion behavior of various traffic participants. One
solution to this problem is the interacting multiple
model (IMM). It is a traceable approximation to the
intractable multiple model optimal Bayes filter [43],
which is modeled as jump Markov non-linear sys-
tem. Besides the states of a system, such a filter es-
timates mode probabilities, which defines how likely
a motion model matches the system’s behavior.

The multiple model optimal Bayes filter and its
approximation assumes a fixed set M = {Mj}rj=1
of r models, each processed by a recursive filter,
e.g. linear KF or UKF. Model state transitions within
the IMM are modeled by a first-order Markov chain
represented by a state transition probability matrix
Π = [pi,j ] ∈ Rr×r, where pi,j denotes the proba-
bility of a state transition from model i to model j.
Hence, the main diagonal pi,i contains the probabili-
ties to stay in the same model state.

Basically, a full cycle of the recursive IMM filter
contains four steps: interaction, prediction, update
and combination. First, we perform a probabilistic
mixing with the posterior state estimate x̂i,t−1|t−1
and covariance estimate Pi,t−1|t−1 of the previous
stage for each filter j as

x̂?
j,t−1|t−1 =

r∑

i=1

µi|j,t−1 x̂i,t−1|t−1, and (6a)

P?
j,t−1|t−1 =

r∑

i=1

µi|j,t−1
(
Pi,t−1|t−1 + viv

T
i )
)
, (6b)
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with innovation vi = (x̂i,t−1|t−1 − x̂?
j,t−1|t−1). This

results in a single initial state x̂?
j,t−1|t−1 and covari-

ance P?
j,t−1|t−1. The mixing probabilities µi|j,t−1

can be calculated as

µi|j,t−1 =
pi,j µi,t−1

µ−j,t
, with µ−j,t =

r∑

i=1

pi,jµi,t−1, (7)

where µ−j,t is the predicted mode probability for filter
j at the current time step, µi,t−1 the mode probabil-
ity of the previous time step, and pi,j the transition
probability to switch from model i to j. In summary,
the previous filters with their mode probability and
the transition probability directly influence the initial
state of each filter.

Afterwards, each of the j filters performs a sepa-
rate prediction step as in Eq. (2) to obtain predicted
states x̂j,t|t−1 and corresponding covariance matrices
Pj,t|t−1. Additionally, this step yields predicted mea-
surements ẑj,t|t−1 and corresponding innovation co-
variance matrices Sj,t (see Eq. (4)). In order to obtain
the posterior state x̂j,t|t and covariance matrix Pj,t|t
each filter updates its state individually (see Eq. (5)).
Within an IMM filter cycle, we then update the mode
probabilities

µj,t =
Lj,t µ

−
j,t∑r

i=1 Li,t µ
−
i,t

, Lj,t = N
(
zt; ẑj,t|t−1,Sj,t

)
,

(8)
where Lj,t denotes the likelihood of a model fitting
the assigned measurement zt.

Finally, we obtain the posterior state x̂t|t and its
covariance Pt|t by combining the output of each fil-
ter, weighted by the mode probability

x̂t =
r∑

j=1

µj,t x̂j,t|t, and (9a)

Pt =
r∑

j=1

µj,t|t
(
Pj,t|t + vjv

T
j

)
, (9b)

with innovation vj = (x̂j,t|t − x̂t|t). Note that this
final result is not part of the filter recursion itself.

Within our tracking framework each tracker is ini-
tialized with three motion models as in [40]. First,
the constant velocity (CV) model for straight mo-
tion. Second, the constant turn rate velocity (CTRV)
model for coordinated turns, e.g. at cross ways. And
third, the random (RAND) model represents static or
slowly moving targets.

3.2. Data Association and Track Management

Following the tracking-by-detection scheme, our
approach requires an association mechanism which

joins tracks and detections in each time frame. To
this end, we leverage two different approaches. A
global exclusive method, i.e. Hungarian [37] algo-
rithm, on the one hand, and a joint probabilistic ap-
proach, i.e. JPDA [2, 15] on the other hand.

For the global exclusive approach we use the neg-
ative intersection over union value of targets and de-
tections to fill a cost matrix. Afterwards, the Hungar-
ian algorithm finds associations by minimizing the
total cost. Tracks without assigned detection and vice
versa are managed by the track management.

The JPDA approach takes all tracks and detections
of a certain time frame into account. First, it per-
forms a gating mechanism based on the Mahalanobis
distance between tracks and detections. Afterwards,
it calculates association probabilities for each detec-
tion within a certain gating region. Finally, the used
filter performs an update weighted by these associ-
ation probabilities. Detections which do not belong
to a gating region and tracks without assigned detec-
tions are also managed by the track management.

A simple track manager takes care of unassigned
detections and tracks. Based on fixed thresholds, a
track missing τm updates gets terminated. On the
other hand, detections without assignment are used
to initialize new tracks. Such newly initialized tracks
are considered active after receiving τu updates.

3.3. RNN Models

Our modular framework allows to exchange dif-
ferent parts with data-driven models. This is, on the
one hand, the IMM with hand-crafted motion mod-
els which can be replaced by a RNN trained for state
prediction. Data association, on the other hand, de-
pends on the intersection over union between tracks
and detections. Hence, we train an encoder-decoder
RNN to find association probabilities.

State Prediction: We leverage a two-layer LSTM
network with 256 hidden units each and a fully con-
nected output layer with two nodes and linear acti-
vation as shown in Table 1. The network takes the

Layer Type Input Output Activation
1 LSTM 4 256 -
2 LSTM 256 256 -
3 FC 256 2 identity

Table 1. Prediction network architecture.

center coordinates xt, yt of the bounding box ground
area and the ego-vehicle movement in x and y di-
rection as an input. The output is then the predicted
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Figure 3. Encoder-Decoder structured network for data as-
sociation using a bidirectional LSTM decoder [49].

center position of the bounding box ground area.
The model is trained with sequences of length 5

and optimized by the Adam [26] optimizer with a
learning rate of 0.003 and the mean squared error
loss. For inference, we replace the IMM by propagat-
ing the sigma points of the UKF through the trained
model (see Eq. (1)).

Data Association: Matching a variable number of
tracks and detections can be handled by an encoder-
decoder model [49]. We adapted this approach for
our purpose and thus, replace the encoder with a
RNN and the MSE loss with a cross entropy error
loss. Furthermore, we also learned the initial internal
states h0 and c0 of the decoder while training.

The input to this network are permutations of all
matching combinations betweenN tracks andM de-
tections including the case that a detection belongs to
no track. Fig. 3 shows the model structure. Each per-
mutation contains the last 5 states x of a track and
one detection d. All entries contain the center po-
sition x, y of the bounding box ground area and its
top-view dimension, i.e. width w and length l.

The encoded permutations ei of size 64 are the
input of the decoder, which is composed of one bidi-
rectional LSTM layer with 64 hidden units and two
fully-connected layers resulting in a single output for
each permutation pair. After softmax activation and
reshaping the output, we get a cost matrix represent-
ing the detection-to-track assignment probability.

Because the network is not able to learn the one-
to-one constraint between tracks and detections, we
apply the Hungarian algorithm on the cost matrix
at inference time. Furthermore, we remove assign-
ments with a probability < 0.5 and assignments to
the dummy track with probability > 0.5.

Training is also done with the Adam optimizer and
a learning rate of 0.003. To avoid overfitting, we ap-
ply early stopping and data augmentation, i.e. mirror-
ing along the x-axis and adding noise.

4. Experimental Results

Dataset: To demonstrate our multi-target tracking
framework for AD scenarios, we evaluate it on the
publicly available KITTI dataset [17] which provides
various environment categories, i.e. City, Residen-
tial and Road. The dataset contains RGB image
sequences and LiDAR data with corresponding 3D
bounding box annotations for eight different object
classes, i.e. Car, Pedestrian, Cyclist, Van, Tram, Per-
son sitting, Truck and Misc.

The KITTI dataset contains two partly overlap-
ping datasets: The tracking dataset and the raw
dataset. The former consists of 21 training sequences
and 29 test sequences and the latter contains 38 se-
quences, sorted by environment categories. For eval-
uations on the tracking dataset, we apply the widely
used train/validation split [38] since there are no pub-
lic annotations for the corresponding test data. For
evaluations on the raw dataset, we carefully select a
set of sequences1 containing all environmental cat-
egories as well as under-represented object classes,
i.e. Cyclist, Truck and Tram. We further ensure that
no training sequence is part of the validation set.

Performance measures: We employ the widely
used CLEAR measures [5], namely Multiple Object
Tracking Precision (MOTP) and Accuracy (MOTA).
MOTP reflects the tracker’s precision wrt. object lo-
cations and dimensions, whereas MOTA states the
overall tracking ability. MOTA can be described as
the consistent labeling of objects over time and takes
false positive trajectories (FP), false negative trajec-
tories (FN) and identity switches (IDS) into account.
Additionally, we report the common track quality
measures [32] which describe the coverage of tracks
as either mostly tracked (MT), partly tracked (PT) or
mostly lost (ML).

Baseline: In addition to our combined filter model,
we implement a 3D version of SORT [6]. Concur-
rently to our work, a similar SORT extension [48]
was submitted to KITTI2 (approximately 5–6 %
lower MOTA than the current leaders). This allows
us to compare our evaluations to state-of-the art ap-
proaches listed in this leaderboard.

Notation: For each experiment, we denote a
tracker configuration by the respective data associa-

1We use sequences 0001, 0005, 0014, 0018, 0060, 0084,
0020, 0039, 0064, and 0070 of KITTI raw as validation set.

2http://www.cvlibs.net/datasets/kitti/
eval_tracking.php
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IDS MOTA MOTP FPS

3D SORT 53 76.5% 75.5% 412
GNN 85 75.9% 74.6% 74
JPDA 99 72.1% 73.4% 50
RNNDA 48 76.2% 74.3% 33
RNNPr − GNN 68 77.2% 71.5% 40
RNNPr − RNNDA 78 75.6% 71.5% 34

Table 2. Evaluation of all tracker configurations on KITTI
raw dataset regarding precision, accuracy, ID switches
and runtime (without the object detection step) in frames
per second (FPS). Bold scores denote the best results.

tion scheme, e.g. GNN denotes the IMM-UKF base-
line with GNN [37]. RNNDA denotes the learned
data association network. Configurations which use
the data-driven state prediction model are denoted by
the additional prefix RNNPr.

4.1. Realistic Traffic Scenario

MTT for AD must perform well for all kinds of
object classes and environments. Hence, we evalu-
ate our trackers on the KITTI raw dataset, consider-
ing all traffic participants for which annotated ground
truth is available. Note that we use the corresponding
training set to optimize all parameters which are then
fixed for all further experiments.

KITTI raw dataset: The results in Table 2 show
that data-driven models improve the tracking perfor-
mance in different ways. The learned data associ-
ation model, on the one hand, produces the lowest
number of ID switches and the prediction model out-
performs the baseline by approx. 0.7% regarding
MOTA on the other hand. Fig. 4 reveals that the

Figure 4. Track coverage of all approaches on the selected
sequences of the KITTI raw dataset.

learned prediction model ensures also a high cover-
age of tracks. Additionally, it shows that the learned
association model minimizes the number of totally
lost tracks. Notwithstanding, we observe that the
threshold values regarding initiation and termination
of tracks highly influence the number of MT targets,
although this only slightly affects the overall MOTA.

IDS MOTA MOTP FPS

3D SORT 77 63.1% 73.1% 657
GNN 46 71.6% 73.2% 98
JPDA 63 60.0% 67.8% 77
RNNDA 43 72.1% 71.2% 54
RNNPr − GNN 65 72.0% 66.8% 52
RNNPr − RNNDA 72 71.7% 65.9% 48

Table 3. Evaluation on KITTI raw dataset, where we omit
detections of every second frame.

Fig. 5 shows qualitative results for RNNPr−RNNDA.

We observed that evaluating solely on the main
object classes (i.e. cars, pedestrians and cyclists)
shows only a minor performance improvement (over-
all 1–2 % MOTA). Nevertheless, we evaluate on all
object classes since they are all important for reliable
perception in AD.

Dropping Detections: In order to evaluate the
state prediction quality of all trackers, we drop de-
tections for selected frames. Because of period-
ically missing detections, updates in consecutive
time frames are not possible. Thus, we adapt the
thresholds for initialization and termination of tracks
within our track management. We set the threshold
for initialization to 1 which causes an immediate ini-
tialization and increase the threshold for termination
by the number of frames without detection.

Table 3 shows the results for omitting all detec-
tions in every second frame. We notice a significant
decrease w.r.t. MOTA for the baseline approach and
the tracker with JPDA. While the former is limited

Figure 5. Qualitative results of sequence ’0005’ from the
KITTI raw dataset. The illustration shows colored 3D
bounding boxes, each color representing a track instance.
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IDS MOTA MOTP FPS

3D SORT 65 55.7% 72.5% 826
GNN 28 63.0% 71.5% 112
JPDA 54 48.4% 61.7% 107
RNNDA 44 67.2% 68.9% 73
RNNPr − GNN 48 63.8% 61.1% 60
RNNPr − RNNDA 53 67.3% 58.7% 56

Table 4. Evaluation on KITTI raw dataset, where we omit
detections of every second and third frame.

by a linear motion model, the latter suffers from its
static configuration. In contrast, configurations with
our learned components lose only ≈ 4%− 5% while
SORT loses more than 13% accuracy. This results in
an increase of ML tracks as illustrated in Fig. 6.

Table 4 shows the results for omitting all detec-
tions in every second and third frame. Again, SORT
and the JPDA tracker perform worse and the number
of ML tracks for these trackers is two times higher as
for our best performing approach.

4.2. Different Detectors

KITTI tracking dataset: For a better comparabil-
ity to state-of-the-art approaches, we also evaluate on
the widely used validation split [38] of the KITTI
tracking dataset. Note, however, that a direct com-
parison is not possible as most approaches evaluate
in 2D image space and only consider the three most
well-represented object classes (cars, pedestrians and
cyclists). Table 5 shows results for all object classes
which are approximately 9% worse in comparison to
our previous evaluations. This can be contributed
to the larger number of highly crowded pedestrian
scenes which cause frequent detection errors due to
heavy occlusions.

So far, all our reported results leverage Frustum
PointNets [39] detections. Table 6 demonstrates the
effect of using PointRCNN [45] instead. The results
are similar to Frustum PointNets (Table 5). However,

Figure 6. Track coverage of all approaches on the selected
sequences of the KITTI raw dataset assuming omitted de-
tections of each second frame.

IDS MOTA MOTP FPS

CIWT [38] (cars) 26 74.38% 82.85% -
CIWT [38] (ped.) 41 61.87% 78.85% -

3D SORT 160 67.2% 71.6% 358
GNN 191 68.9% 71.0% 50
JPDA 103 57.8% 72.2% 34
RNNDA 185 64.5% 70.3% 27
RNNPr − GNN 229 68.7% 67.0% 30
RNNPr − RNNDA 240 64.0% 66.1% 27

Table 5. Evaluation on the validation split of the KITTI
tracking dataset. Note that [38] only evaluate on selected,
well-represented object classes.

IDS MOTA MOTP FPS

3D SORT 64 66.4% 80.9% 400
GNN 67 68.5% 81.2% 62
JPDA 48 54.8% 81.4% 45
RNNDA 77 60.2% 81.4% 31
RNNPr − GNN 91 68.2% 76.7% 36
RNNPr − RNNDA 128 62.5% 76.3% 32

Table 6. Evaluation on the validation split of the KITTI
tracking dataset using PointRCNN [45] detections.

we observe a performance decrease for models with
RNNDA. This can be contributed to the model train-
ing, since RNNDA was trained using Frustum Point-
Nets detections. Additionally, the overall improved
MOTP results reveal a significantly better bounding
box orientation estimation of PointRCNN compared
to Frustum PointNets.

5. Conclusion

In this paper, we investigate several tracking as-
pects for AD within a combined Bayesian filter-
based MTT approach. In particular, we leverage the
IMM combined with UKF, as well as different data
association methods. In order to increase tracking ro-
bustness despite unreliable detections, we exchange
the state prediction and data association with data-
driven models. Our evaluations show competitive re-
sults to state-of-the-art approaches and an improved
robustness on the challenging KITTI dataset.
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Abstract. We propose a semi-supervised approach
to learning by formulating the optimization as con-
strained gradient descent on a loss function that in-
cludes unsupervised terms. The method is demon-
strated on semi-supervised optical flow training that
promotes photo-consistency and smoothness of the
flow. We show that the unsupervised objective sig-
nificantly improves the estimation on a distant do-
main while maintaining the performance on the orig-
inal domain. As a result, we achieve state-of-the-art
results on the Creative Flow+ dataset among CNN-
based methods that did not train on any samples from
the dataset.

1. Introduction

Supervised learning of CNN methods achieves
state of the art results on all major optical flow
datasets. However, when presented with samples that
are distant to their training set, they often produce in-
consistent estimates. We find that unsupervised opti-
cal flow methods, possibly due to their less domain-
dependent objective, perform better in this setting.
However, they fall short of supervised methods when
enough labeled training data is available. We aim to
combine the performance of the supervised methods
with the robustness of the unsupervised methods.

This paper presents a new semi-supervised train-
ing approach that combines supervised and unsuper-
vised objectives. The training optimization is for-
mulated as a constraint gradient descent that takes
gradients from both losses; however, skips all unsu-
pervised samples that lead to worse performance on
the supervised samples i.e., all unsupervised gradi-
ents that have a negative dot product with the super-
vised gradient are omitted. The method is tested on
optical flow estimation, and it is shown that it makes
the network perform close to the unsupervised meth-

I1 a) Supervised: Sintel

I2 b) Semi: (Sintel→Sintel movie)

∆I21 c) Semi: (Sintel→CF+)

d) Ground-truth

Figure 1: Optical flow on a distant domain without/with semi-
supervision. Left: A sample pair of images I1, I2 from the
Creative Flow+ (CF+) dataset, their difference ∆I21 and opti-
cal flow color coding wheel. Notice texture changes on both
the object and background. Middle: Foreground optical flow
for supervised and semi-supervised models with GT. Right: I2
warp to I1 showing geometric consistency of the flow. The Sin-
tel fine-tuned model (a) corrupts optical flow in major parts. The
proposed constrained semi-supervision on Sintel domain alone
(b) improves the estimates. Further improvement is achieved by
adding unlabeled CF+ samples (c).

ods on data from a distant domain while maintaining
the performance on the labeled domain.

More specifically, we demonstrate this behavior
on a recently published Creative Flow+ dataset [24].
The dataset features artistic-like scenes with untex-
tured regions or objects with changing texture. All
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supervised CNN-based approaches fine-tuned on an-
other domain (Sintel) produce highly inaccurate es-
timates in this setting. The method is able to re-
train a supervised model mitigating this effect. We
demonstrate that even without using the distant do-
main samples, we already get a significant perfor-
mance gain. Upon introducing the images from the
distant domain (with no GT), we are able to bring the
error on the distant domain even lower.

The contributions of this paper are the following.
First, a novel method to combine supervised and un-
supervised objectives is presented. The training is
formulated as constrained gradient descent on a loss
function that includes terms from unsupervised train-
ing - i.e., in the optical flow estimation photocon-
sistency, smoothness, and forward-backward consis-
tency.

Second, we demonstrate that when supervised
training leads to abrupt estimates on a distant do-
main, introducing the unsupervised objective using
the proposed semi-supervised method improves re-
sults on the distant domain. However, the model per-
formance on the supervised domain does not drop.
This effect is observed even without using any sam-
ples from the other domain.

Finally, we show that adding unlabeled samples
from the distant domain improves the results on the
distant domain even more.

2. Related work

Supervised training. FlowNet [7] was the first
work to introduce end-to-end supervised training of
optical flow. The authors proposed two CNN ar-
chitectures as well as a large synthetic dataset Fly-
ingChairs that was needed to train the network in
a supervised fashion. This work demonstrated that
neural networks are able to act as an optical flow es-
timator.

Many other architectures and training techniques
were proposed since [12, 10, 28, 21, 27, 11] im-
proving results on standard optical flow benchmarks
[4, 8, 20] and surpassing the classical approaches.

Though our method applies to any end-to-end
trainable network, we chose to build our experiments
on PWC-Net [28] architecture, since it is a popu-
lar choice among current approaches. It combines
a pyramidal approach with correlation cost volume
on each level. Furthermore, the correlation is done
on encoder features instead of images.

Unsupervised/self-supervised training. There is
also a class of unsupervised or self-supervised tech-
niques that aim to train the optical flow network with-
out any ground truth, just from frame pairs (or more
frames) themselves [1, 33, 23, 2]. This means they
do not rely on any labeling, which in the optical flow
context is nontrivial to obtain, and can thus be trained
on potentially unlimited size of data.

They apply the same principles from the famous
Horn–Schunck method [9] or many related [26] to
create a training signal for the network. The main
task is to assess the optical flow quality without any
ground-truth. This is mostly done by measuring
the photometric difference between the source image
and the back-warped target image. Other objectives,
such as smoothness or consistency between forward
and backward flow, are added.

This work is further developed by adding occlu-
sion reasoning [30, 19, 13] and so-called data dis-
tillation [16, 17]. Furthermore, attempts to train al-
gorithms that combine optical flow with other tasks
were done [32, 22, 14].

Fully unsupervised training is, however, not able
to compete with the supervised training on the con-
ventional optical flow datasets. They struggle with
photometric deviations like occlusions, motion blur,
reflections, et cetera. Even the ability to use much
more training data than supervised approaches does
not compensate.

Semi-supervised training. If we do omit cases
of unsupervised pre-training and supervised fine-
tuning, there were only a few attempts in the optical
flow context to create a combination of supervised
and unsupervised training.

A simple supervised and unsupervised loss com-
bination was presented in [31, 34]. Lai et al. [15]
present an approach based on a Generative Adver-
sarial Network. The discriminator is trained to
recognize the photometric difference map between
the source and target image back-warped by either
ground truth or estimated optical flow. Further, end-
point error loss is applied alongside the adversarial
loss for all labeled data.

3. Method

The goal is to combine supervised and unsuper-
vised training. In this section, the proposed con-
strained semi-supervision method is first introduced,
then the loss terms used throughout the work are
listed.
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3.1. Semi-supervision: constraint gradient de-
scent

At each iteration during training, the network is
evaluated on one pair of frames with ground-truth
(supervised sample) and N pairs without (unsuper-
vised samples). The gradient from the supervised
sample poses a reasonable (but not optimal) con-
straint that skips all unsupervised samples leading to
worse performance on the supervised samples.

Let Θ be the network parameters. By back-
propagation, the gradient

Gs = ∇Lsup(Θ) (1)

is computed for the supervised sample and

Gn
u = ∇Lun(Θ) (2)

for n-th unsupervised sample1.
Gs is used as the constraining vector. Positive dot

product with the constraining vector ensures that the
added Gi

u does not have an orientation opposite to
Gs. Thus, the parameter update vector is defined as:

G = Gs +
∑

∀i:Gi
u·Gs>0

λMGi
u (3)

Thus, by updating the parameters by G, the value of
Lsup linearized at Θ will not rise. However, some
updates from unsupervised loss are still considered.

3.2. Loss terms

Let I1, I2 be two consecutive frames and fGT,1→2

ground truth forward flow. Let l = 1 . . . 5 be the flow
pyramid scale from the largest 1⁄4 to the smallest 1⁄64 of
the input image size. Let fl1→2, fl2→1 be the estimated
forward and backward flow on the scale l. By I l and
flGT we denote an image resp. flow down-sampled to
the scale l.

Supervised loss is the standard L2 endpoint-error
loss [28]:

Lsup(f1→2) =
5∑

l=1

αl
∑

x∈P

∥∥∥fl1→2(x)− flGT,1→2(x)
∥∥∥
2
.

(4)
Data term. The data term is based on [19]; how-

ever, we drop the occlusion-awareness since it has

1To ease the notation, we omit some obvious arguments from
the loss function.

not proven beneficial in our setting. The term is de-
fined as

LlD(fl1→2, f
l
2→1) =

∑

x∈P
ρ
(
fD
(
I l1(x), I l2(x + fl1→2(x))

))
+

ρ
(
fD
(
I l2(x), I l1(x + fl2→1(x))

))
,

(5)

where ρ(x) = (x2 + ε2)γ (default γ = 0.45) is
the Charbonnier penalty [26] that increases robust-
ness to outliers. fD measures the photometric differ-
ence between two pixels. The experiments are done
with both brightness constancy constraint (per chan-
nel) [33] and the ternary census transform adjusted
for loss function in [19].

Smoothness term. Second order smoothness con-
straint is employed as in [19], since it has been
proved to be beneficial in classical flow estimation
methods , [29]. To decrease over-smoothing on ob-
ject edges, we combine it with edge awareness [13].

LlS(fl1→2, f
l
2→1) =

∑

x∈P

∑

(s,r)∈N(x)

σ
(
I l1, f

l
1→2, s, x, r

)
+

σ
(
I l2, f

l
2→1, s, x, r

)
,

(6)

whereN(x) contains horizontal, vertical and both di-
agonal neighborhoods of x and σ measures the edge-
aware smoothness:

σ(I, f,s, x, r) =

ρ
(
f(s)− 2f(x) + f(r)

)
·

· exp
(
− ‖I(x)− I(s)‖2

)
·

· exp
(
− ‖I(x)− I(r)‖2

)
.

(7)

We assume ρ(·) computes the average over the penal-
ties from each component.

FW-BW consistency. Adding the forward-
backward consistency term also proved to help with
learning the flow [19]:

LlC(fl1→2, f
l
2→1) =

∑

x∈P
ρ
(

fl1→2(x)− fl2→1

(
x + fl1→2(x)

))
+

ρ
(

fl2→1(x)− fl1→2

(
x + fl2→1(x)

))
.

(8)

Unsupervised loss is defined as a weighted sum
over loss terms and pyramid levels:

Lun =
5∑

l=1

αl
(
LlD + λSL

l
S + λCL

l
C

)
(9)

where αl is the pyramid scale weight.
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4. Experiments

This section describes the structure of experiments
and the technical details. Results are discussed in the
next section.

Overall, the experiments examine the domain
transfer ability of supervised, unsupervised and
semi-supervised training from Sintel dataset [4] to
Creative Flow+ [24]. First, supervised and unsuper-
vised models are tested and their performance is ob-
served. Afterwards, the proposed constrained semi-
supervision is put to the test in two settings - limited
to samples from Sintel domain or also including un-
labeled frames from CF+. For comparison, we try
to pose the semi-supervision as a simple loss com-
bination and also test a baseline supervised on both
Sintel and CF+. All experiments were done with the
popular PWC-Net [28] architecture.

To denote the experiments, a system of abbrevia-
tions in the format “[training method]: ([datasets])”
is used. Training method is either supervised (Sup),
unsupervised (Unsup) or semi-supervised (Semi).
Plus sign “+” denotes the training was done on a
combination of two datasets. With semi-supervised
training, arrow “→” separates a dataset serving as
the source of supervised samples from a dataset of
unsupervised samples.

4.1. Datasets

In the experiments, we use the following datasets.
The letter in the bracket next to the dataset name is
the abbreviation used in the experiments.

Sintel (S) [4]. To avoid complicated online eval-
uation, a 90-10 split of the publicly-available data to
training and testing parts was created yielding 1562
train and 2 × 87 test samples (separately clean and
final pass). In training, both Clean and Final passes
are combined.

Sintel movie (Sm). All frames from the origi-
nal movie [5] were extracted for unsupervised and
semi-supervised training, similarly to [17]. To cope
with compression artifacts, we downscaled the 4K
resolution images to 1152 × 648. Cuts between
scenes, where no optical flow exists, were avoided
with PySceneDetect [6]. Moreover, too dim (typi-
cal for fade ins/outs) or too similar consecutive im-
ages were detected using pixel-wise brightness resp.
brightness difference and excluded. Altogether, 9372
samples were created.

KITTI 2015 (K) [20]. Testing is done on all
200 annotated samples. Unsupervised methods train

on 13K samples from the multiview extensions of
KITTI’15 and ’12 [8]. Frames from the annotated
pairs are excluded.

Creative Flow+ (CF+) [24] is a recently intro-
duced dataset with artistic-like scenes and ground
truth optical flow. Tests are done on the 10K sam-
ple list provided by the authors. Some of the experi-
ments also use the set of 153K mixamo train frames.
Full resolution images (1500× 1500) are used. Note
that it is more meaningful to observe performance on
the foreground areas since optical flow on the back-
ground is often not well defined.

4.2. Supervised training distant domain perfor-
mance

First, to establish an overview of how supervised
models perform on a distant domain, their perfor-
mance is tested on CF+, similarly to [24]. The
two pre-trained PWC-Net models made available by
authors [28] are evaluated. One was trained on
FlyingChairs (C) [7] and FlyingThings3D (T) [18]
datasets, the second was fine-tuned for the Sintel [4]
dataset. The experiments are denoted as Sup: (C,T)
and Sup: (C,T,S).

4.3. Unsupervised training distant domain perfor-
mance

Next, we make a similar overview for the unsu-
pervised training and its distant domain transfer abil-
ity. Two unsupervised models are trained, one with
per-channel brightness constancy constraint, another
with census transform data term. We name the mod-
els Unsup [brightness]: (C,K+S) and Unsup [Cen-
sus]: (C,K+S) respectively.

Tests with different parameter settings and train-
ing protocols resulted in the following training pro-
cedure. To initialize the models, a pre-training phase
consisting of 240K iterations on FlyingChairs dataset
[12] is performed with unsup. loss Lun, regulariza-
tion λS = 3.0, no forward-backward consistency
(λC = 0) and fD as a brightness or difference.
Learning rate starts with 1e − 4 and is halved ev-
ery 100K iterations. Input image size is 512 × 384.
Fine-tuning is done on all KITTI and Sintel samples
with the same setting, apart from activated consis-
tency term λC = 0.3 and fD as brightness or census
difference respectively. With the brightness differ-
ence, convergence is reached after 455K iterations,
746K iterations are needed for the census difference.
Images are cropped to 896× 320.
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4.4. Semi-supervision on single domain

The previous overview shows that unsupervised
models have a better distant domain transfer ability,
but suffer from low accuracy on the original domain.
We therefore attempt to introduce the transfer abil-
ity of unsupervised methods to a well-performing su-
pervised model using the proposed semi-supervision
method.

The PWC-Net model trained (supervised) for Sin-
tel dataset by the authors [28] is fine-tuned using the
constrained semi-supervision method taking super-
vised samples from Sintel and unsupervised samples
from Sintel movie dataset. We refer to this experi-
ment as Semi: (S→Sm).

In order to establish a control experiment, we also
continue training with supervised loss only (labeled
as Sup: (C,T,S) - modif. supervision).

In the experiments we tested multiple hyper-
parameter settings and ended with the following one:
One supervised and six unsupervised samples are fed
to the method at each iteration. We set λM = 0.1,
fD as per-channel brightness constancy constraint.
Frames are cropped to 768 × 384. To warm-up the
optimization, first three epochs are performed just
with supervised loss and are followed by 2 semi-
supervised epochs with small learning rate 1e-7. Af-
terwards, we perform 133K iterations with learning
rate 1e-5 that is halved after 30K, 50K, 70K, 90K,
105K and 120K iterations.

4.5. Semi-supervision including distant domain

Next, the idea of the previous experiment is devel-
oped further by taking unlabeled samples from the
distant domain.

The network is trained in the same way as in the
previous experiment with the only difference that the
unsupervised samples are taken from the training part
of the CF+ dataset (i.e., frames only, no GT flow).
We name the experiment as Semi: (S→CF).

4.6. Unconstrained semi-supervision

To test the need for the constrained semi-
supervision method, an experiment without any con-
straining takes place. The loss is simply defined as a
combination of supervised and unsupervised terms

Lcomb = Lsup + λULun (10)

as e.g. in [31].
We refer to this experiment as Uncons. semi: (S).

Again, the experiment starts with the Sintel fine-

tuned network as in previous sections. The network
is trained with Lcomb as a loss function on the Sin-
tel dataset with λS = 3.0, λC = 0.3 and fD as a
brightness constancy constraint.

We test three settings of the unsupervised loss
weight λU = 0.1, 1 and 2. In all three cases, a CF+
test error drop occurs in the first 30K iterations, how-
ever, it is followed by a rise even above the control
(Sup: (C,T,S) - modif. supervision) experiment. At
the same time, with all three λU settings, both terms
of the loss Lsup and Lun are decreasing during train-
ing. This suggests that Lcomb leads to an over-fitting
on Sintel in unsupervised objective.

In the final results table, we state the situation be-
fore the error rise for λU = 0.1 and 1.

4.7. Supervised training

To establish a supervised comparison, we also
fine-tune the PWC-Net model for the CF+ dataset in
a supervised manner. We refer to the experiment as
Sup: (C,T,S,S+CF).

In each training epoch, we train on all Sintel train-
ing samples and the same number of randomly cho-
sen CF+ samples. We train for 171K iterations start-
ing with learning rate 1e-5 that is gradually halved.

4.8. Common technical details

This subsection describes the common technical
details of the training.

In all experiments, Adam optimizer is used with
default β1 = 0.9, β2 = 0.999. Batch size is four
with the exception of semi-supervised experiments.
As in the original PWC-Net paper [28], the pyramid
weights are α1 = 0.005, α2 = 0.01, α3 = 0.02,
α4 = 0.08, α5 = 0.32.

Census photometric difference is computed on dif-
ferent window sizes at each pyramid scale, from the
largest to the smallest scale it is: 7 × 7, 7 × 7, 5 ×
5, 3× 3, 3× 3.

For data augmentation, both common and relative
(between frames in a pair) geometric transforms are
used: random rotation, translation, scale, squeeze,
flip, and crop. Photometric transforms are also in-
cluded: random gamma, brightness, contrast, and
relative color channel brightness changes.

Error measures. EPE refers to an average end-
point error

1∑
P∈S |A(P )|

∑

P∈S

∑

x∈A(P )

∥∥fP1→2(x)− fPGT,1→2(x)
∥∥
2
,

(11)
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CF+ AEPE [px] Sintel AEPE KITTI 2015
median [px] [%]

Method ALL ALL FG Clean Final Fl-all
Horn-Schunck [9] 8.34 3.49 12.17 8.73∗ 9.61∗ −
Classic+NLfast [25] 13.35 7.05 9.27 9.12∗ 10.08∗ −
Brox2011 [3] 9.05 3.27 8.28 7.56∗ 9.11∗ −
Sup: (C,T) [28] 66.97 41.88 22.77 2.44 3.82 34.3
Sup: (C,T,S) [28] 74.23 33.54 18.21 1.78 2.41 10.6
Sup: (C,T,S) - modif. supervision 30.44 14.73 11.30 1.69 2.22 14.7

Unsup [brightness]: (C,K+S) 10.60 4.80 7.99 5.23 6.18 40.2
Unsup [Census]: (C,K+S) 15.06 9.05 8.65 4.22 5.19 25.1

Uncons. semi: (S) λU = 0.1 25.76 15.19 10.63 1.79 2.19 12.2
Uncons. semi: (S) λU = 1 24.91 15.32 9.95 2.54 3.10 22.0
Semi: (S→Sm) 17.36 8.41 8.91 1.81 2.49 16.9
Semi: (S→CF) 7.88 3.79 6.65 1.79 2.25 18.9

Sup: (C,T,S,S+CF) 8.19 3.54 5.62 1.81 2.24 17.4

Table 1: Main results table. All numbers except columns marked median and Fl-all, are mean endpoint errors over all test samples.
Fl-all denotes outlier ratio (>3px and >5% EPE), median is computed across individual sample average EPEs. Dataset abbreviations: C:
Flying Chairs [12], T: FlyingThings3D [18], S: Sintel [4], Sm: Sintel movie, CF: Creative Flow+[24], K: KITTI unlabeled multiview
extension [8, 18]. For classical methods, we list the results from [24]. Results marked with a star (*) come from the official test
benchmark.

Creative Flow+ AEPE [px]
median Style, FG Speeds, FG

ALL ALL FG flat toon tex stylit <1% 1-3% >3%
Sup: (C,T) [28] 66.97 41.88 22.77 41.18 10.86 16.09 23.67 23.17 17.84 32.73
Sup: (C,T,S) [28] 74.23 33.54 18.21 24.71 7.03 17.46 21.77 17.50 15.18 30.94
Sup: (C,T,S) - modif. supervision 30.44 14.73 11.30 7.79 6.42 13.62 14.76 8.48 12.36 28.22

Unsup [brightness]: (C,K+S) 10.60 4.80 7.99 7.67 5.90 9.01 8.85 4.90 9.54 25.51
Unsup [Census]: (C,K+S) 15.06 9.05 8.65 7.83 5.93 9.94 9.99 5.47 9.81 27.79

Uncons. semi: (S) λU = 0.1 25.76 15.19 10.63 11.14 5.99 12.35 12.19 8.26 10.99 26.19
Uncons. semi: (S) λU = 1 24.91 15.32 9.95 11.24 5.72 11.75 10.86 7.76 10.24 24.5
Semi: (S→Sm) 17.36 8.41 8.91 7.20 5.66 10.66 10.79 5.95 10.18 26.23
Semi: (S→CF) 7.88 3.79 6.65 6.85 5.32 8.94 6.19 3.47 8.68 23.58

Sup: (C,T,S,S+CF) 8.19 3.54 5.62 5.84 4.61 9.10 4.36 2.94 7.21 20.20

Table 2: Detailed results of the presented methods on CF+. We list the same metrics as in the original paper [24]. All numbers
except column marked median, are average endpoint errors. Median is computed across individual sample average EPEs. Performance
is broken down into All (full frame) and FG (foreground) as well as by style and speed (<1% ground-truth optical flow length less than
1% of the frame size i.e. 15 px, 1-3% between 15 and 45 px, >3% over 45 px).

where S is a set of test samples, A(P ) defines the
area of interest (whole image, foreground pixels etc.)
and fP1→2 is the flow estimated on sample P scaled to
original image size.

Fl-all is an error measure proposed for the
KITTI’15 dataset, where there is an uncertainty in
optical flow measurements. It is defined as the per-
centage of optical flow outliers i.e., flow end-point
error is > 3px and > 5% of GT flow.

5. Results and discussion

This section discusses the results of the experi-
ments described in the previous section. The results
of the experiments are listed in Table 1, qualitative
assessment is presented in Figure 2. Extended eval-

uation on the Creative Flow+ dataset is shown in Ta-
ble 2.

Supervised training. First, we observe that the
supervised methods fail on the CF+ dataset, see
Sup: (C,T) and Sup: (C,T,S) in Table 1. Figure 2
indicates abruptly outlying estimates on constant in-
tensity regions. Problems also occur on object tex-
ture changes. We get slightly different results to [24],
possibly due to a different framework, however, the
conclusion is the same.

Unsupervised training. With unsupervised train-
ing, the models do not suffer from the distant
domain transfer issues - the performance on the
CF+ dataset is significantly better, as shown in Ta-
ble 1, Unsup [brightness]: (C,K+S) and Unsup [Cen-
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I1 I2 ∆I21 Flow GT Sup: (C,T,S)
Unsup

brightness:
(C,K+S)

Semi:
(S→Sm)

Semi:
(S→CF)

Sup:
(C,T,S,S+CF)

Figure 2: Qualitative assessment. Input images (first two columns) with a color coded difference visualization (third column); the
ground truth flow and flow estimates for selected methods (following columns).

sus]: (C,K+S). Figure 2 shows that the estimated
flow field is smoother, with no abrupt outliers. How-
ever, the test errors on Sintel and KITTI dataset stay
far behind the supervised models.

We hypothesize that although the unsupervised
objective is unable to properly handle the effects of
occlusions, motion blur, local ambiguities, etc., yet,
it is more universal than training for a supervised ob-
jective on a single domain. Therefore, we expect it
to perform better on a distant domain.

Semi-supervision on single domain. Semi-
supervision attempts to combine the observed dis-
tant domain transfer ability of unsupervised models
with the accuracy of supervised models on Sintel and
KITTI.

Table 1, Semi: (S→Sm), shows that constrained
semi-supervision training significantly drops the test
error on CF+ while the error on Sintel changes just
slightly. Curiously, this is done without introducing
any CF+ samples.

We attribute the increased CF+ accuracy partially
to our way of supervised training, which seems to

decrease the error on CF+ as shown by our control
experiment Sup: (C,T,S) - modif. supervision. It is
most likely caused by differences in augmentations,
probably skipping additive white noise in our setting.

However, semi-supervision leads to a significant
decrease, suggesting that adding the unsupervised
loss with the proposed method makes the model per-
form closer to unsupervised methods on a distant do-
main with only minor changes on the Sintel domain.

Semi-supervision including distant domain.
When the semi-supervised model is explicitly pre-
sented with the samples from CF+, the error on this
distant domain drops significantly to the level of the
unsupervised methods (Table 1 - Semi: (S→CF)).
Note that the error is also significantly below the
semi-supervision on a single domain. Again, the er-
ror on Sintel stays virtually the same.

We hypothesize that since the images from the
other domain are presented, the network starts to
recognize it and optimize the unsupervised criterion
specifically on these samples. However, the super-
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vised constraint prevented to apply the same criterion
on the supervised samples.

Unconstrained semi-supervision. Uncon-
strained semi-supervision tested the need for the
proposed constrained semi-supervision method
by formulating the training as a simple linear
combination of supervised and unsupervised losses.

As Table 1 Uncons. semi: (S) shows, the perfor-
mance on CF+ is similar for both λU settings, es-
pecially on the foreground regions. On Sintel and
KITTI, low λU = 0.1 preserves the accuracy of the
initial model; however, a significant error rise is ob-
served with higher λU = 1.

The observations correspond to the expectations
- with small unsupervised term weight, the training
is not able to introduce the unsupervised objective to
the model. When we attempt to promote it more with
higher λU , the accuracy on the supervised domain is
lost.

Supervised CF training. Supervised training
on CF+ is able to improve the performance on the
dataset while maintaining the accuracy on Sintel
(see Table 1, Sup: (C,T,S,S+CF)). Evaluated on the
whole frames, it does not surpass constrained semi-
supervision. However, as it was already mentioned,
the background flow is often not well defined; thus,
this metric is not as relevant.

The performance margin to a constrained semi-
supervision on the foreground areas is not as large
as e.g., the margin between supervised and unsuper-
vised methods on Sintel, suggesting that CF+ fea-
tures complicated scenes that are hard to solve even
with supervision.

6. Conclusion

In this paper, we propose a semi-supervision
method by constraining the unsupervised update by
the supervised gradient.

The experiments show that the proposed con-
strained semi-supervision method leads to a better
performance in distant domain transfer while main-
taining the performance on the supervised (i.e., Sin-
tel) domain. Some improvement is already observed
when introducing the unsupervised objective only
on a single domain, even better results are achieved
when the unlabeled samples from the distant domain
are included. Our control experiment was not able to
prove that the same effect is achieved by an uncon-
strained formulation.

As it could be foreseen, supervised training on the
distant domain improves the results even further, but
the margin is not as significant as expected.
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Abstract. We review the most recent RANSAC-like
hypothesize-and-verify robust estimators. The best
performing ones are combined to create a state-of-
the-art version of the Universal Sample Consensus
(USAC) algorithm. A recent objective is to imple-
ment a modular and optimized framework, making
future RANSAC modules easy to be included. The
proposed method, USACv20, is tested on eight pub-
licly available real-world datasets, estimating homo-
graphies, fundamental and essential matrices. On
average, USACv20 leads to the most geometrically
accurate models and it is the fastest in comparison
to the state-of-the-art robust estimators. All reported
properties improved performance of original USAC
algorithm significantly. The pipeline will be made
available after publication.

1. Introduction

The RANdom SAmple Consensus (RANSAC) al-
gorithm [12] has been one of the most widely used
robust estimators in computer vision. RANSAC
and many of its variants have been successfully ap-
plied to a wide range of vision tasks, for instance,
short baseline stereo [37, 39], motion segmenta-
tion [37], detection of geometric primitives [31],
wide baseline matching [27, 21, 22], in structure-
from-motion [1, 40, 30] (SfM) or simultaneous lo-
calization and mapping [11, 23] (SLAM) pipelines,
image mosaicing [14], and to perform [41] or initial-
ize multi-model fitting [16, 26].

In this paper, we review some of the most recent
RANSAC modifications, combine them together and
propose a state-of-the-art variant of the Universal
Sample Consensus [28] (USAC) algorithm. Also, an
important objective is to make the implemented mod-
ular and optimized C++ framework publicly avail-

(a) Community Photo Collection dataset [40].

(b) ExtremeView dataset [22].

(c) Tanks and Temples dataset [17].

(d) Piccadilly dataset [40].

Figure 1. Example image pairs where USACv20 has
lower error to ground truth inliers than OpenCV RANSAC
and USAC [28] estimators.

able, therefore, making future RANSAC modules
easy to be combined with the proposed USACv20.

In short, the RANSAC approach repeatedly cre-
ates minimal sets of randomly selected points and
fits a model to them, e.g., a circle to three 2D points
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or a homography to four 2D point correspondences.
Next, the quality of the estimated model is measured,
for example, by the cardinality of its support, i.e.,
the number of data points closer than a manually set
inlier-outlier threshold. Finally, the model with the
highest score, polished, e.g., by least squares fitting
of all inliers, is returned.

Scoring function. Many modifications have been
proposed since the publication of RANSAC, improv-
ing the components of the algorithm. For instance, in
MAPSAC [36], the robust estimation is formulated
as a process that estimates both the parameters of
the data distribution and the quality of the model in
terms of maximum a posteriori. MLESAC [38] es-
timates the model quality by a maximum likelihood
process with all its beneficial properties, albeit under
certain assumptions about data distributions. In prac-
tice, MLESAC results are often superior to the inlier
counting of plain RANSAC, and are less sensitive to
the inlier-outlier threshold defined manually.

Local Optimization. Observing that RANSAC re-
quires in practice more samples than theory predicts,
Chum et al. [8, 18] identified a problem that not all
all-inlier samples are “good”, i.e., lead to a model
accurate enough to distinguish all inliers, e.g., due
to poor conditioning of the selected random all-inlier
sample. They addressed the problem by introducing
the locally optimized RANSAC that augments the
original approach with a local optimization step ap-
plied to the so-far-the-best model. This approach had
been further improved in Graph-Cut RANSAC [3]
considering the fact that real-world data often form
spatially coherent structures. Graph-Cut RANSAC
exploits the proximity of the points in the local op-
timization step, leading to results superior to LO-
RANSAC in terms of geometric accuracy.

Sampling Strategies. Samplers NAPSAC [24] and
PROSAC [6] modify the RANSAC sampling strat-
egy to increase the probability of selecting an all-
inlier sample early. PROSAC exploits an a priori
predicted inlier probability rank of the points and
starts the sampling with the most promising ones.
PROSAC and other RANSAC-like samplers treat
models without considering that inlier points often
are in the proximity of each other. This approach
is effective when finding a global model with inliers
sparsely distributed in the scene, for instance, the
rigid motion induced by changing the viewpoint in
two-view matching. However, as it is often the case
in real-world data, if the model is localized with in-

lier points close to each other, robust estimation can
be significantly sped up by exploiting this in the sam-
pling. NAPSAC assumes that inliers are spatially co-
herent. It draws samples from a hyper-sphere cen-
tered at the first, randomly selected, point. If this
point is an inlier, the rest of the points sampled in its
proximity are more likely to be inliers than the points
outside the ball. Progressive NAPSAC [2] was pro-
posed to combine NAPSAC-like localized sampling
with PROSAC by drawing minimal samples from
gradually growing neighborhoods.

Optimizing Model Verification. One of the most
successful improvement for speeding up the verifi-
cation is the optimal randomized model verification
strategy [20, 7] (WaldSAC) based on Wald’s theory
of sequential decision making. When the level of
outlier contamination is known a priori, the Wald-
SAC strategy is provably optimal. In practice, how-
ever, inlier ratios have to be estimated during the
evaluation process and WaldSAC adjusted to the cur-
rent so-far-the-best model. The performance of the
SPRT test is not significantly affected by the imper-
fect estimation of these parameters.

Termination criterion. There were a number of
different termination criteria proposed for RANSAC-
like hypothesize-and-verify methods. The original
criterion is based on the assumption that the inliers
are noise-free. The number of iterations required is
calculated from the inlier ratio and the number of
points needed for the model estimation. This crite-
rion was then relaxed by Progressive NAPSAC [2]
by terminating if the probability of finding a model
which has significantly more inliers than the previous
best falls below a threshold. In [6], another criterion
was proposed. The PROSAC algorithm terminates
if the number of inliers satisfies the following con-
ditions: (i) non-randomness – the probability that i∗

out of n data points are by chance inliers to an ar-
bitrary incorrect model is smaller than a threshold;
(ii) maximality – the probability that a solution with
more than i∗ inliers exists and was not found after k
samples is smaller than µ0.

2. USACv20

The structure of the proposed framework is sum-
marized in Algorithm 1. The standard RANSAC
loop is executed between lines 2: and 27:. The imple-
mentation is modular, and each step of the algorithm
allows a range of options.

In the version of USACv20 evaluated in the paper,
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Algorithm 1 USACv20.
Input: P – points; η – confidence, t – maximum

iterations, T – termination, ...
Output: θ̂∗ – the best found model
1: ε∗ ←∞
2: while ! terminate (T , η, t) do
3: S ← sampling (P)
4: if ! validate sample (S) then
5: continue
6: Θ̂← estimate (S)
7: for θ̂ ∈ Θ̂ do
8: if ! validate model (θ̂,S) then
9: continue

10: if ! preemptive verification(θ̂) then
11: continue
12: ε← model quality(θ̂)
13: if ε∗ ≺ ε then
14: θ̂

′ ← recover if degenerate (θ̂,S)
15: if θ̂′ = NULL then
16: continue
17: ε

′ ← model quality (θ̂′)
18: if ε∗ ≺ ε′ then
19: θ̂LO ← local optimization (θ̂

′
)

20: θ̂LO ← recover (θ̂LO)
21: if θ̂LO 6= NULL then
22: εLO ← model quality (θ̂LO)
23: if ε′ ≺ εLO then
24: θ̂

′
, ε
′ ← θ̂LO, εLO

25: θ̂∗, ε∗ ← θ̂
′
, ε
′

26: T ← update (θ̂∗, Iθ̂∗)
27: θ̂∗ ← polish final (θ̂∗)

the chosen sampling method is Progressive NAP-
SAC, alg. 1, line 3. Other samplers are described
in section 2.2. The pre-emptive model verification
is SPRT, alg. 1, line 10. Other options could be
none verification or Td,d test, see section 2.4. The
termination condition, alg. 1, line 2 is combina-
tion of SPRT and P-NAPSAC since P-NAPSAC and
SPRT are used. The measured quality of model is
MSAC (sum of truncated errors), alg. 1, line 12. The
MSAC quality could be also replaced by MLESAC
or MAGSAC quality, see section 2.3. The local op-
timization step is done in the line 19 by graph-cut-
based local optimization. Other modifications of lo-
cal optimization are in the section 2.1.

The degeneracy of model (e.g., validation of
epipolar oriented constraint [9]) is done in the alg.
1, line 8 and after finding so-far-the-best model in the

line 14 (e.g., planarity of fundamental matrix [10]. In
the end the output model is polished by least squares
fitting on all inliers, alg. 1, line 27.

2.1. Local optimization

The options for local optimization are listed be-
low. The one chosen in USACv20 is written in bold.

LO-RANSAC
[8]

Refine each so-far-the-best
model by an inner RANSAC.

FLO-RANSAC
[18]

Improvement of LO-
RANSAC.

Graph-Cut
RANSAC [3]

Spatial coherence is consid-
ered when doing the inner
RANSAC.

σ-consensus [4]
A part of the MAGSAC algo-
rithm marginalizing over the
noise-scale.

We chose Graph-Cut RANSAC since it is more accu-
rate than LO-RANSAC and FLO-RANSAC and sig-
nificantly faster than the σ-consensus which requires
a number of least-squares fittings.

2.2. Sampling

The possible options for sampling are listed below.
The one chosen in USACv20 is written in bold.

Uniform [12] The default option.

NAPSAC [24]
Selecting the first points and,
then, local sampling from its
neighborhood.

PROSAC [6]

Sampling from the most
promising samples first
and progressively blending
to the uniform sampler of
RANSAC.

P-NAPSAC [2]

Combination of PROSAC
and NAPSAC sampling
from gradually growing
neighborhoods.

We chose P-NAPSAC since it leads to finding a
good-enough sample earlier than PROSAC when the
sought model is localized. In case of having a global
model, e.g. the background motion in two images, it
is found not noticeably later than by PROSAC due to
progressively blending into global sampling.

2.3. Quality

The options for the model quality calculation are
listed below. The one chosen is written in bold.
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RANSAC [12] The number of inliers.

MSAC [38] The sum of truncated errors.

MLESAC [38] Likelihood of the model.

LMedS [29] The least median of errors.

MAGSAC [4]
Sum of errors marginalized
over the noise-scale.

We chose MSAC quality calculation since it is al-
ways more accurate than that of RANSAC; it does
not require expensive calculations like MLESAC or
MAGSAC; and does not need to know the outlier ra-
tio a priori as LMedS does.

2.4. Pre-emptive verification

The options for the pre-emptive verification are
listed below. The one chosen is written in bold.

Td,d [7]
If d out d points are inliers
then model is good.

SPRT [7]
Verify model by sequential
decision making based on
Wald’s theory.

The Td,d test can make many false-negatives (reject-
ing good models) when the inlier ratio is low. There-
fore we chose SPRT verification.

2.5. Termination criterion

The options for the termination criterion are listed
below. The one chosen is written in bold.

Standard [12]

Terminates if the probability
of finding a model with more
inliers than the previous best
falls below a threshold with
some confidence.

PROSAC [6]
Terminates when the maxi-
mality and non-randomness
criteria are satisfied.

SPRT [7]
Termination based on a se-
quence of subsequent model
validations.

P-NAPSAC [2]

The standard RANSAC crite-
rion relaxed by requiring the
new model to select signifi-
cantly more inliers than the
previous best.

MAGSAC [4]
Marginalization of the stan-
dard RANSAC criterion over
the noise-scale σ.

The termination of SPRT and P-NAPSAC depends
on different properties of the robust procedure. P-
NAPSAC stops when the relaxed RANSAC criterion
is triggered, meaning that the probability of finding a
significantly better model than the previous best falls
below a threshold. The SPRT criterion is triggered
by the number of subsequent model verification se-
quences made. These two techniques can straight-
forwardly be combined. Thus, we stop when at least
one of them is triggered.

2.6. Degeneracy

USACv20 framework includes different tests on
degeneracy. DEGENSAC [10] is about detecting
when the majority of the drawn sample originates
from the same 3D plane. For fundamental and essen-
tial matrix estimation oriented epipolar constraint [9]
is evaluated as well. For homography estimation the
verification of samples by its orientation is included.

2.7. Other features

For PROSAC or Progressive NAPSAC, exploiting
an a priori known quality of the input data points
makes the finding of a good-enough model signif-
icantly earlier than by other samplers. However,
such prior information usually is unknown, degrad-
ing PROSAC to being the entirely uniform sampler
of RANSAC. In the proposed USACv20 framework,
when such quality function is not available, we use
the density of the points as the quality function. This
reflects the fact real-world data often forms spatially
coherent structures and, thus, good correspondences
tend to be close.

The spatial coherence of points plays important
role in the estimation. For instance, it is exploited
in the graph-cut-based local optimization or in P-
NAPSAC sampler. Consequently, the neighborhood
graph must be computed. The efficient way to do
this is using a multi-layer grid described in [2]. In
USACv20 such neighborhood estimation is imple-
mented and used in the experiments.

3. Experimental results

We compared the proposed USACv20 to three ro-
bust estimators, i.e., USAC [28] 1, GC-RANSAC [3]
and the RANSAC implementation of OpenCV. The
applied USACv20 consists of SPRT verification, DE-
GENSAC [10], P-NAPSAC sampler and the local

1http://wwwx.cs.unc.edu/˜rraguram/usac/
USAC-1.0.zip
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optimization of GC-RANSAC. USAC estimator [28]
includes SPRT verification, DEGENSAC, PROSAC
sampler and the local optimization of the original
LO-RANSAC. All estimators were tested using the
same number of maximum iterations (10,000 for H
and 1,000 for F,E estimation) and confidence equals
to 99%.

Fundamental matrix estimation was evaluated on
the benchmark of [5]. The [5] benchmark includes:
(1) the TUM dataset [35] consisting of videos of in-
door scenes. Each video is of resolution 640 ×
480. (2) The KITTI dataset [13] consists of con-
secutive frames of a camera mounted to a mov-
ing vehicle. The images are of resolution 1226 ×
370. Both in KITTI and TUM, the image pairs are
short-baseline. (3) The Tanks and Temples (T&T)
dataset [17] provides images of real-world objects
for image-based reconstruction and, thus, contains
mostly wide-baseline pairs. The images are of size
from 1080 × 1920 up to 1080 × 2048. (4) The
Community Photo Collection (CPC) dataset [40]
contains images of various sizes of landmarks col-
lected from Flickr. In the benchmark, 1 000 im-
age pairs are selected randomly from each dataset.
SIFT [19] correspondences are detected, filtered by
the standard SNN ratio test [19] and, finally, used for
estimating the epipolar geometry.

The compared methods are USAC [28], GC-
RANSAC [3], the RANSAC [12] implementation in
OpenCV and the proposed USACv20. For all meth-
ods, the confidence was set to 0.99. For each method
and problem, we chose the threshold maximizing the
accuracy. The used error metric is Sampson distance.
All methods were in C++.

The first four blocks of Table 1 report the median
errors (εmed, in pixels), the failure rates (f ; in per-
centage) and processing times (t; in milliseconds) on
the datasets used for fundamental matrix estimation.
We report the median values to avoid being affected
by the failures – which are also shown. A test is con-
sidered failure if the error of the estimated model is
bigger than the 1% of the image diagonal. The best
values are shown in red, the second best ones are in
blue. It can be seen that USACv20 leads to the lowest
errors on all datasets. Its failure ratio and processing
time are always the lowest or the second lowest.

In Figures 4,5,7,6, the cumulative distribution
functions (CDF) of the Sampson errors (left plot;
horizontal axis) and processing times (right; in mil-
liseconds) of the estimated fundamental matrices are

shown. Being accurate or fast is interpreted by a
curve close to the top. It can be seen that USACv20 is
always amongst the top performing methods in terms
of geometric accuracy. The only methods which are
faster than USACv20 on any dataset, are significantly
less accurate on that particular dataset. For instance,
on Tanks and Temples (Fig. 7), USACv20 is the
second fastest method (right plot) right after USAC
which is the least accurate one (left).

For homography estimation, we downloaded
homogr (12 pairs) and EVD (15 pairs) datasets [18].
They consist of image pairs of different sizes from
329 × 278 up to 1712 × 1712 with point correspon-
dences and inliers selected manually. The homogr

dataset contains mostly short baseline stereo images,
whilst the pairs of EVD undergo an extreme view
change, i.e., wide baseline or extreme zoom. In both
datasets, the correspondences are assigned manually
to one of the two classes, i.e., outlier or inlier of the
most dominant homography present in the scene. All
algorithms applied the normalized four-point algo-
rithm [15] for homography estimation and were re-
peated 100 times on each image pair. To measure the
quality of the estimated homographies, we used the
RMSE re-projection error calculated from the pro-
vided ground truth inliers.

The fifth and sixth blocks of Table 1 report the
median errors (εmed, in pixels), the failure rates (f ; in
percentage) and processing times (t; in milliseconds)
on the datasets used for homography estimation. We
report the median values to avoid being affected by
the failures – which are also shown. A test is con-
sidered failure if the error of the estimated model is
bigger than the 1% of the image diagonal. The best
values are shown in red, the second best ones are in
blue. It can be seen that USACv20 is the most ac-
curate method on the Homogr dataset and the second
most accurate one on ExtremeView. Its failure ra-
tio and processing time are always the lowest or the
second lowest.

In Figures 2,3, the cumulative distribution func-
tions (CDF) of the re-projection errors (left plot; hor-
izontal axis) and processing times (right; in millisec-
onds) of the estimated homographies are shown. Be-
ing accurate or fast is interpreted by a curve close
to the top. It can be seen that USACv20 is always
amongst the most accurate methods. Its processing
time is the second best on Homogr dataset by a mar-
gin of 2-3 ms. On ExtremeView, USACv20 is sig-
nificantly faster than all the competitor robust esti-
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mators.

For essential matrix estimation, we downloaded the
Strecha (1359 pairs) dataset and the Piccadilly

scene from the 1DSfM dataset2 [40]. For the images
of Strecha, both the intrinsic camera parameters
and the ground truth poses are provided. First, we
detected SIFT correspondences [19], filtered them
by the standard SNN ratio test [19] The intrinsic pa-
rameters were used for normalizing the point coordi-
nates. The ground truth pose was used for validation
purposes selecting the ground truth inlier correspon-
dences from the detected ones. These selected inliers
were then used for measuring the error of the esti-
mated essential matrices. The 1DSfM dataset consists
of 13 scenes of landmarks with photos of varying
sizes collected from the internet. It provides 2-view
matches with epipolar geometries and a reference re-
construction from incremental SfM (computed with
Bundler [32, 33]) for measuring error. We iterated
through the provided 2-view matches, detected SIFT
correspondences [19], filtered them by the standard
SNN ratio test [19], and calculated the ground truth
relative pose from the reference reconstruction made
by the Bundler algorithm. Note that all image pairs
were excluded from the evaluation where fewer than
20 correspondences were found. For the evaluation,
we chose the largest scene, i.e. Piccadilly, consisting
of 7, 351 images.

The last two blocks of Table 1 report the median
errors (εmed, in pixels), the failure rates (f ; in per-
centage) and processing times (t; in milliseconds) on
the datasets used for essential matrix estimation. The
best values are shown in red, the second best ones are
in blue. It can be seen that USACv20 is the most ac-
curate method on both datasets while being the sec-
ond fastest one.

In Figures 8,9, the cumulative distribution func-
tions (CDF) of the SGD errors (left plot; horizontal
axis) and processing times (right; in milliseconds) of
the estimated homographies are shown. Being ac-
curate or fast is interpreted by a curve close to the
top. It can be seen that USACv20 is always amongst
the most accurate methods while being marginally
slower than USAC. However, since USAC does not
have essential matrix solver so only fundamental ma-
trices were estimated and then converted to essen-
tial matrix using ground truth intrinsic matrices. In
general, 5-points algorithm [25] is much slower than

2http://www.cs.cornell.edu/projects/
1dsfm/
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Figure 2. The cumulative distribution functions (CDF)
of the Re-projection errors (left plot; horizontal axis) and
processing times (right; milliseconds) of the estimated ho-
mographies on the Homogr dataset.
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Figure 3. The cumulative distribution functions (CDF)
of the Re-projection errors (left plot; horizontal axis) and
processing times (right; milliseconds) of the estimated ho-
mographies on the ExtremeView dataset.

7-points algorithm which was used for F -estimation
and number of output models for E ranges from 0 to
10 while number of estimated F matrices is at most
3; consequently all of these makes USAC framework
faster.

In summary, the proposed USACv20 is, on all but
one dataset (i.e., ExtremeView), more accurate than
the original USAC algorithm while, usually, being
faster. Even though USAC is more accurate on
ExtremeView, it fails twice as often as USACv20.

The values reported in Table 1 are summarized in
Table 2. It can be seen that the proposed algorithm is,
on average, more accurate and faster than the com-
pared state-of-the-art robust estimators. Its failure
rate is the second best right behind GC-RANSAC.

4. Conclusion

In this paper, we reviewed some of the most re-
cent RANSAC variants, combined them together and
proposed a state-of-the-art variant, i.e. USACv20,
of the Universal Sample Consensus [28] (USAC)
algorithm. USACv20 is tested on 8 datasets, es-
timating homographies, fundamental and essential
matrices. On average, it leads to the most geo-
metrically accurate models and it is fastest com-
pared to USAC, OpenCV’s RANSAC and Graph-
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Fundamental matrix Homography Essential matrix

KITTI [13] TUM [35] T&T [17] CPC [40] Homogr [18] EVD [18] Strecha [34] Piccadily [40]

εmed t f(%) εmed t f εmed t f εmed t f εmed t f εmed t f εmed t f εmed t f

USACv20 0.2 1.9 0.2 0.3 2.1 8.4 0.6 5.6 12.9 0.5 5.3 43.0 0.7 2.2 0.0 2.3 8.5 31.3 0.4 8.1 4.6 0.9 7.3 2.2
GC-RANSAC 0.3 2.3 0.1 0.4 3.1 8.6 0.6 8.8 13.0 0.5 7.2 42.8 0.8 2.8 0.0 2.5 24.5 26.0 0.4 7.4 3.8 0.9 14.5 3.1
USAC 0.4 3.3 0.3 0.6 2.2 9.2 1.4 4.4 15.0 0.8 3.1 44.0 0.9 10.0 0.0 1.8 25.0 73.3 0.8 9.1 3.8 1.3 2.6 3.1
OpenCV 0.4 1.6 0.2 0.5 4.4 8.3 0.8 18.5 13.0 0.7 14.9 45.2 0.9 1.3 0.0 3.5 136.0 33.3 0.5 69.2 3.0 1.0 121.0 0.8

Table 1. Median errors (εmed), failure rates (f ; as percentages) and avg. run-times (t, in milliseconds) are reported for
each method on all tested problems and datasets. The error of the fundamental matrices is the Sampson distance from the
ground truth. For homographies, the RMSE re-projection error from ground truth inliers is used. For essential matrix, the
error is symmetric geometric distance (SGD) of normalized points. A test is considered a failure if the error is bigger than
1% of the image diagonal. For each method, the inlier-outlier threshold was set to maximize the accuracy (for fundamental
matrix is 1 pixel, for homographies 2 pixels and for essential matrix, 1 pixel normalized by the intrinsic matrices) and the
confidence to 0.99. The best values in each column are shown by red and the second best ones by blue.

USACv20 GC-RANSAC USAC OpenCV
ε 0.7 0.8 1.0 1.0
t 5.1 8.8 7.5 45.9
f 12.8 11.9 18.6 13.0

Table 2. The avg. of the errors (ε; in pixels), processing
times (t; in milliseconds) and failure rates (f ; in percent-
ages) in Table 1 are reported. The best values in each col-
umn are shown by red and the second best ones by blue.
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Figure 4. The cumulative distribution functions (CDF) of
the Sampson errors (left plot; horizontal axis) and pro-
cessing times (right; milliseconds) of the estimated fun-
damental matrices on the KITTI dataset.
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Figure 5. The cumulative distribution functions (CDF) of
the Sampson errors (left plot; horizontal axis) and pro-
cessing times (right; milliseconds) of the estimated fun-
damental matrices on the TUM dataset.

Cut RANSAC. Compared to the original USAC, all
reported properties improved significantly. Also,
an important objective was to implement a modu-
lar and optimized framework in C++ to make future
RANSAC modules easy to be combined with. The
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Figure 6. The cumulative distribution functions (CDF) of
the Sampson errors (left plot; horizontal axis) and pro-
cessing times (right; milliseconds) of the estimated fun-
damental matrices on the CPC dataset.
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Figure 7. The cumulative distribution functions (CDF) of
the Sampson errors (left plot; horizontal axis) and pro-
cessing times (right; milliseconds) of the estimated fun-
damental matrices on the Tanks and temples dataset.
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Figure 8. The cumulative distribution functions (CDF) of
the Sampson errors (left plot; horizontal axis) and process-
ing times (right; milliseconds) of the estimated essential
matrices on the Strecha dataset.

pipeline will be made available after publication.
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Figure 9. The cumulative distribution functions (CDF) of
the Sampson errors (left plot; horizontal axis) and process-
ing times (right; milliseconds) of the estimated essential
matrices on the Piccadilly scene of the 1DSfM dataset.
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Abstract. We designed two maximally simplified
and controlled experiments to test event-based and
frame-based cameras in the price category afford-
able for an ordinary university research lab. First,
we put common ArUco markers on a rotating disk
and observed them by both types of cameras. We re-
constructed the image from an event camera using
a publicly available state-of-the-art algorithm and
compared the ArUco marker recognition reliability.
Surprisingly, our results suggest that the ability of
the tested event camera to recognise quickly moving
markers is inferior to an affordable 1000 fps frame-
based camera. In the second experiment, we let the
cameras observe a freely flying subsonic pistol pro-
jectile. A very expensive 20000+ fps camera pro-
vided ground-truth images, as the acquisition rate of
the affordable frame-based camera was insufficient.
Although event camera data was partially corrupt, it
still allowed us to estimate the position of the small
projectile every 10 µs, when the projectile translated
mostly along the event camera pixel rows.

1. Introduction

Independent pixels of event cameras [1] generate
asynchronous events in response to local log inten-
sity changes. Each pixel performs a level-crossing
sampling of the difference of logarithmic brightness
sensed by the pixel. Each time the difference passes
a preset threshold, the pixel emits a change detection
(CD) event and resets its brightness reference to the

current brightness. A CD event is characterised by its
pixel coordinates, its precise timestamp in microsec-
ond resolution, and the polarity of the brightness
change. The advantages of event cameras over tra-
ditional cameras include lower sensor latency, higher
temporal resolution, higher dynamic range (120 dB+
vs. 60 dB of traditional cameras), implicit data com-
pression, and lower power consumption.

This work gives a partial answer to the fundamen-
tal question of applicability of event cameras: What
are the applications, in which event cameras can-
not be replaced by high-speed cameras capturing se-
quences of image frames? The answer to this ques-
tion, however, is not so straightforward. Our initial
hypothesis was that the superiority of event cameras
comes from the fast capture of asynchronous events
only from pixels where changes happen, as compared
to the full frame readout in ordinary frame-based
cameras. This phenomenon should be even stronger
when changes in the scene are rather local.

Initially, we tested the limits of our ATIS event
camera at a partner university in a very fast exper-
iment when observing a flying bullet. Surprisingly,
the motion speeds and scene complexities the event
camera could record well were lower than we ex-
pected. Moreover, we observed strange phenomena
in the event recordings.

In general, the speed limits of event cameras de-
pend on two factors:

1. The pixel bandwidth and sensitivity restricts
which light changes can be detected by a pixel.
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2. The ability of the digital sensor logic to read out
events from the pixel array correctly and in time
restricts the spatial and temporal distribution of
events in the pixel array.

We tested these limits in two experimental set-
tings, namely on the detection of quickly rotating
ArUco markers and on the position tracking of a
flying projectile fired from a firearm. We compare
event camera results to images captured by high-
speed global shutter cameras.

2. Related work

There is a recent survey by Gallego et al. [2] men-
tioning several different event camera application ar-
eas. The mentioned areas are real-time interaction
systems, object tracking, surveillance, object recog-
nition, depth estimation, optical flow, 3D structured
light scanning, high dynamic range (HDR) imaging,
video compression, visual odometry, and image de-
blurring.

Event cameras attract growing attention, which
was demonstrated at the Second International Work-
shop on Event-based Vision and Smart Cameras at
CVPR in June 2019 [3].

To the best of our knowledge, however, the litera-
ture dealing with head-to-head comparisons of event
and common frame-based cameras is quite limited.

A common (frame-based) monochrome camera
provides as its output the sequence of grayscale im-
ages naturally. Reconstruction of images from an
event camera is more complicated. The state-of-the-
art approach to cope with this task was published in
Rebecq et al. [4]. Among other things, the authors
compare the quality of images reconstructed from
events to standard camera frames. The reconstructed
images better capture the dynamic range of the scene
than the standard frames. The authors also compare
visual-inertial odometry algorithms running on tra-
ditional camera frames and on images reconstructed
from events. Event-based reconstructed intensity im-
age results are reported to be on average superior
not only to the results of traditional frames, but also
to the state-of-the-art methods running on events di-
rectly. However, the first is no surprise as the chosen
traditional camera frame rate was only 20 frames per
second and the captured frames suffered from severe
motion blur likely due to the too long exposure time.

Falanga et al. [5] analyse the response latency
of obstacle avoidance of a quadrotor drone with a
mounted camera. The obstacle size and shape was

assumed to be known. Their event-based algorithm
was able to detect the obstacle whenever a displace-
ment of at least five pixels occurred. Given drones
available at that time, the authors concluded that an
event camera with resolution 320 × 262 pixels gave
obstacle detection latencies comparable to standard
stereo cameras running at 60 fps. Increasing the res-
olution of event cameras might make them a better
solution, as the ability to sense a distant obstacle de-
pends on sufficiently high spatial sensor resolution.
However, most of the analysis was done theoretically.
Experiments were only done with the event camera,
not with the standard cameras.

Barrios-Avilés et al. [6], probably the closest work
to ours, also test the object detection latency of event
and standard cameras. Their vision system detects a
black circular dot rotating on a white disk and esti-
mates the position of the dot for control purposes.
Surprisingly, the authors report latency differences
between the two cameras in the order of 100 ms,
despite the frame rate of the standard camera being
64 fps at VGA image resolution. It is unlikely that
such long latency would be caused by the cameras or
by the object detection algorithm based on image in-
tensity thresholding running on the standard camera
frames.

3. Method

We test the speed limits of an event camera on the
task of reading ArUco markers [7] in motion. The
name ArUco originates in a free software library 1

for processing the markers. The markers placed on
a disk are rotated at a gradually increasing veloc-
ity, which is measured independently by a rotary en-
coder, see Figure 1.

Raw CD events on their own do not suffice for the
detection of typical markers. To alleviate this prob-
lem, we utilise a state-of-the-art method for intensity
image reconstruction from events. One such method,
E2VID2 was presented in [8] and [4].

The intensity image reconstruction method
E2VID [4] utilises a recurrent convolutional neural
network whose architecture is similar to UNet. In
each iteration, the network computes a reconstructed
intensity image as a function of a batch of events and
a sequence of K previously reconstructed intensity
images. The authors stored each event batch for
the network input into a spatio-temporal voxel grid.

1https://www.uco.es/investiga/grupos/ava/node/26
2code: https://github.com/uzh-rpg/rpg e2vid
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The network was trained in a supervised mode
on simulated event sequences and corresponding
ground-truth intensity images.

We measure marker detection performance by two
metrics, namely detection count and detection relia-
bility. We define marker detection reliability r as

r =
1

NrNm

Nr∑

i=0

Mi, (1)

where Mi is the number of detected unique marker
IDs within revolution i, Nr is the total number of
recorded revolutions, Nm is the number of unique
marker IDs printed on the disk. Detection count c is

c =
1

NrNm

Nm∑

j=0

Ij , (2)

where Ij is equal to the number of times the marker
ID j is detected within Nr revolutions.

4. Implementation

We use the ATIS HVGA Gen3 event camera
kit PSEE350EVK (from Prophesee3).We experimen-
tally estimated the maximum data bandwidth to be
approx. 22 million events per second, by rotating the
camera with a telelens as fast as possible while look-
ing at a densely textured scene. We mounted a lens
with the focal length of 25 mm. The sensor generates
both the standard change detection (CD) events, as
well as asynchronous exposure measurement (EM)
events. An older generation of the ATIS camera is
described in [9]. In this work, we utilise only the
simpler CD events, so that results can be applied to
other event cameras such as [1] or [10]. The size of
the photodiode of the change detector is not stated di-
rectly by the manufacturer. However, we expect this
area to be at least 10% of the pixel area, which is the
CD fill factor reported for the previous sensor gener-
ation in [9]. Thus, the size of the photodiode should
be at least 20 · 20 · 0.1 = 40 µm2. The change detec-
tor sensitivity parameter is in the range from 0 (least
sensitive) to 100 (most sensitive).

All parameters in the reconstruction method [4]
were kept at the defaults, except the number of events
used for the reconstruction of a single intensity im-
age. Unless noted otherwise, we set this number to
8640 events per frame, which enables good recon-
struction of the markers we are using on plain white

3https://www.prophesee.ai/

camera ATIS Photron Basler

resolution [px] 480×360 1024×1024 480×360
pixel size [µm] 20×20 20×20 4.8×4.8
exposure [µs] - 1 59*

frame rate [FPS] - 20000 1000**
* exposure time in weak lighting conditions was 3000 µs
** 300 FPS was used during weak lighting conditions

Table 1: Camera parameters and experiment condi-
tions

background. The effect of changing this parameter is
investigated further in the experiments.

Our chosen fast global shutter camera is the Basler
acA640-750um USB 3.0 camera 4. Basler pixel area
is at most 23 µm2. Therefore, we may assume that
the light-sensitive area of the ATIS pixels is at least
two times larger than the same area in the Basler pix-
els.

Additionaly, a high speed camera Photron Fast-
Cam SA-Z5 was used as a reference during tests with
the projectiles at the ballistic laboratory of Depart-
ment of Weapons and Ammunition, University of
Defence in Brno. A list of basic parameters for all
cameras is listed in Table 1.

ArUco markers were 3 × 3 mm in size. They
were generated from a custom dictionary: 4 × 4
data squares in each marker, dictionary size 10, ran-
dom seed 65536. Only marker IDs 1-9 were used.
The centres of the nine markers were located on the
circumference of the rotating disk, at the radius of
85 mm. A DC motor with controllable rotation speed
rotated the disk. A rotary encoder mounted on the
motor shaft provided independent angular velocity
measurements.

A photo of our experimental setup for comparison
of the ATIS and Basler cameras in different light-
ing conditions is in Figure 1. Both cameras have a
similarly-sized field of view, see Figure 2. The Basler
camera sees the marker as a square of size 34.1 pix-
els, the ATIS camera perceives the apparent marker
size of 34.4 pixels. We deliberately chose as small
markers as possible, in order to maximally reduce the
number of events generated by the ATIS sensor per
a single pass of a marker across the pixel array. The
setup of the balistic experiment with the high-speed
camera is shown in Figure 3.

4https://www.baslerweb.com
5https://photron.com/fastcam-sa-z/
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Figure 1: The experimental scene setup with strong
lighting. The frame-based Basler (left) and the event-
based ATIS (right) cameras are watching the white
rotating disk with nine ArUco markers. A nonflick-
ering LED lamp illuminates the scene from the top.

(a) ATIS (b) Basler

Figure 2: The field of view of each camera.
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Figure 3: The scene setup of the balistic experiment.

5. Experiments

5.1. Strong lighting

Initially, we used the lamp shown in Figure 1 to
strongly illuminate the scene, which is common in
industrial settings. With exposure time 59 µs of the
Basler camera, the white paper colour has mean in-
tensity values of 61.3± 2.5, the black marker colour
has mean intensity of 7.0± 1.5.

With the Basler camera, ArUco marker detection
works reliably up to 25 revolutions per second (rps)
or 150 kpx/s image velocity. A 50% detection reli-
ability is reached around 34 rps, see Figure 6. See
Figure 7 for sample marker images at different angu-
lar speeds.

The images reconstructed from the ATIS events

enable reliable marker detection up to 4 rps or
24 kpx/s image velocity with sensitivity set to 40.
50% detection reliability is reached around 6 rps, see
Figure 4. With growing rotational speed, the detec-
tion reliability of the ATIS decays faster when the
sensitivity is set significantly lower or higher than 40,
shown in Figure 5. However, the sensitivity value of
60 yields the most detected markers per revolution at
low rotational speed, it detects the least markers at
higher speeds. See Figure 8 for sample reconstructed
marker images at different angular speeds.

Figure 9 shows two batches of recorded events
100 µs long visualised in the image plane. White
pixels denote positive, black pixels negative polarity
events. At the lower velocity of 3.5 rps, events are
mostly read in time from all pixels which generate
them. At the higher angular velocity of 6 rps, how-
ever, it is more common that no events are read from
several pixel rows in the middle of the ArUco marker
where events should have been present. Most of the
time, the event rate measured in 50 µs intervals of the
recording did not exceed 15 Mev/s in the faster case
and 12 Mev/s in the slower case.

Reducing the event camera sensitivity setting did
not help in raising the speed limits significantly.
When the sensitivity is set too low, no events are gen-
erated at higher speeds. A sufficiently high sensitiv-
ity needs to be set so that the intensity reconstruction
algorithm has enough data to reconstruct the inten-
sity well. In the case of 4 rps, for example, lowering
the sensitivity from 50 to 20 reduces the highest typ-
ical event rate from 15 to 10 million events per sec-
ond. However, too few events are recorded, see Fig-
ure 10 and reliable intensity reconstruction becomes
more challenging with very low sensitivity, see Fig-
ure 4. Altering the number of events used for the
reconstruction of a single image does not help either,
see Figure 11. Too few events and fine marker details
are easily missed. Too many events and the edges be-
come blurred.

5.2. Weak lighting

Weaker scene lighting is common in more natu-
ral or outdoor scenes, where artificial light cannot
be conveniently used or is undesirable. We emu-
late weak lighting at night by a weaker LED lamp
with all other light sources turned off, see Figure 12.
With weak lighting and exposure time 3000 µs of the
Basler camera, the white paper gives mean intensity
values of 26.3 ± 4.5, the black marker colour has a
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Figure 4: Reliability of marker detection with the
ATIS as a function of rotational speed. For several
sensitivity settings s. Strong lighting.
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Figure 5: Detection count, i.e. mean number of sin-
gle marker detections per revolution with the ATIS
as a function of rotation speed. For several sensitiv-
ity settings s. Strong lighting.
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Figure 6: Reliability of marker detection and mean
count of single marker detections per revolution as
functions of rotational speed. Basler camera, strong
lighting.

(a) 4.0 rps (b) 23 rps (c) 30 rps

Figure 7: Sample images of an ArUco marker cap-
tured by the Basler camera. Strong lighting, expo-
sure time 59 µs. Different rotational speeds.

(a) 3.5 rps (b) 6.0 rps

Figure 8: Sample ATIS reconstructions of an ArUco
marker from 8640 events per frame. Sensitivity 40,
strong lighting.

(a) 3.5 rps. (b) 6.0 rps.

Figure 9: 100 µs of recorded ATIS events at different
rotational velocities. Sensitivity 40, strong lighting.

(a) s = 50. (b) s = 20.

Figure 10: 100 µs of recorded ATIS events at 4 rps
using different sensitivities s. Strong lighting.

(a) 2073 ev. (b) 4620 ev. (c) 8640 ev.

Figure 11: Unreliable ATIS reconstructions of an
ArUco marker at 4 rps, sensitivity 20, strong light-
ing. Different number of events used for each recon-
struction.

mean intensity of 2.6± 1.2.
With the Basler camera, ArUco marker detection

works reliably up to 0.47 rps or 2.9 kpx/s image ve-
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Figure 12: The experimental scene setup with weak
lighting.
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Figure 13: Reliability of marker detection with the
Basler camera and mean count of single marker
detections per revolution as functions of rotational
speed. Weak lighting.

(a) 0.47 rps (b) 0.61 rps

Figure 14: Images of an ArUco marker captured by
the Basler camera at weaker lighting. Exposure time
3000 µs. Different rotational speeds.

locity. 50% reliability is reached approximately for
0.61 rps or 3.7 kpx/s, see Figure 13. See Figure 14
for sample marker images at different angular speeds.

The signal-to-noise ratio of the ATIS event cam-
era decreases with decreasing lighting intensity. To
quantify this fact, we measured the ambient event
rate generated by the event camera in a static scene,
see Figure 15. In the case of sensitivity equal to 50,
the noise event rate grows from 7000 events per sec-
ond with strong lighting to 15000 events per second
with weak lighting. This difference becomes even
more pronounced with higher sensitivity settings.

The images reconstructed from the ATIS camera
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Figure 15: Maximum ambient (noise) event rate of
the ATIS at the strong and weak lighting, as the func-
tion of contrast sensitivity. The event rate was mea-
sured on 10 ms long intervals.
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Figure 16: Reliability of marker detection using the
ATIS as a function of rotational speed. For several
sensitivity setting values s. Weak lighting.

events with the highest tested sensitivity setting of
60 enable reliable marker detection up to 2.2 rps or
13 kpx/s image velocity, see Figure 16. 3.1 rps or
19 kpx/s yield 50% reliability with the best perform-
ing sensitivity setting of 60. Lower sensitivities of 50
and 40 perform worse than 60. This time, unlike with
the strong lighting, the same observation applies even
to the detection count visualised in Figure 17. See
Figure 18 for sample reconstructed marker images at
different angular speeds and with different sensitivity
settings.

5.3. Balistic experiment

To further test the ability of the ATIS sensor to
read events from its pixel matrix, we recorded a 9 mm
projectile freely flying at the speed of 300 m/s. The
image velocity of the projectile was 220 kpx/s in
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Figure 17: Mean count of single marker detections
per revolution with the ATIS as a function of rota-
tional speed. For several sensitivity setting values s.
Weak lighting.

(a) 2.0 rps,
s = 40

(b) 2.0 rps,
s = 60

(c) 3.2 rps,
s = 60

Figure 18: ATIS reconstructions of an ArUco marker
from 8640 events per frame at weaker lighting. Dif-
ferent rotational speeds and sensitivities s.

ATIS, 620 kpx/s in Balser, 930 kpx/s in the Photron
camera. ATIS sensitivity was set to 50. The resulting
samples of event batches 20 µs long are in Figure 19,
together with photos of the projectile taken by the
Basler and the Photron cameras. The ATIS event rate
did not exceed 6 million events per second. The pro-
jectile image from the Basler camera is significantly
blurred, while the Photron image clearly shows the
projectile shape.

When the projectile translated horizontally along
the pixel rows of the ATIS, the sensor managed to
read events from the entire projectile area in time.
We also recorded the same flying projectile with the
ATIS camera rotated by ninety degrees around the
optical axis, to emulate vertical projectile translation.
The visualisation of the vertical translation in Fig-
ure 19 suggests events omitted on entire pixel rows,
resembling the results in Figure 9.

With the projectile moving mostly along the pixel
rows, we are able to estimate the trajectory of the
projectile directly from the ATIS events using a sim-
ple method. We process events in 10 µs long batches

(a) ATIS, horizontal motion.

(b) ATIS, vertical motion. Image rotated 90 degrees CCW.

(c) Basler camera, exposure 59 µs.

(d) Photron camera., exposure 1 µs.

Figure 19: A 9 mm projectile freely flying at 300 m/s.
20 µs of recorded ATIS events and photos of the
same scene from the Basler and Photron cameras.

and compute a bounding box of all negative polar-
ity events within a batch. In the case of the Photron
images, we threshold each image and compute the
bounding box of its dark pixels. The centroid of a
bounding box becomes the estimated projectile posi-
tion.

Figure 20 shows the estimated projectile trajec-
tories. The estimates from the Photron camera are
more precise than from the ATIS thanks to its higher
sensor resolution. The ATIS provided estimates at
the rate of 100 kHz and the Photron at 20 kHz.
We note, however, that the Photron rate can be in-
creased to 100 kHz for image resolutions compara-
ble to the resolution of the ATIS. The image veloc-
ities observed by the two cameras do not have the
same direction because their optical axes were not
aligned. The results from the Basler camera are not
included in the plots as its low 1000 Hz frame rate
would fail to capture the image of the projectile more
than twice per run, even if the image velocity was
only 220 kpx/s.

6. Discussion

With strong lighting, the ATIS event camera en-
ables ArUco marker detection and classification at
approx. 6× lower image velocity than the fast global
shutter Basler camera. This limit is likely caused
by the limited capacity of the event readout circuitry
of the ATIS. As the image velocity increases, the
circuitry more likely tends to ommit reading events
generated by pixels in a subset of pixel rows during
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Figure 20: Sample image trajectory of a freely fly-
ing 9 mm projectile estimated from ATIS events and
Photron camera images.

a 100 µs long interval. This readout jitter corrupts
event timestamps and makes intensity image recon-
struction more challenging.

Our experiment with the freely flying projectile
suggests that the readout circuitry limits are more
strict when most events come from a small number of
columns, rather than from rows. Omissions of event
data appear already at event rates below 6 million
events per second. Furthermore, we believe that the
estimated global event rate limit of 22 million events
per second was not exceeded in any of our experi-
ments.

The Basler camera is only limited by the motion
blur when the scene lighting is strong. Weaker scene
lighting demands larger exposure time which reduces
the maximum motion speed with reliable marker de-
tection.

Our experimental results suggest that the ATIS
camera can detect markers moving 4.5× faster than
the Basler camera with weaker lighting. We note,
however, that this difference may not be entirely
caused by the event-based nature of the ATIS cam-
era, as the pixel photodiode area of the ATIS sensor
is at least two times larger than the same area in the
Basler camera.

The ATIS performance drop due to weaker light-
ing is likely caused by a larger share of noise events,
i.e. a lower signal to noise ratio. Noise events are
caused by light shot noise. Shot noise more likely

causes a sufficiently large apparent change in relative
contrast when the light intensity is lower. Marker re-
construction from events works best with the highest
tested ATIS sensitivity setting. This suggests that the
amount of informative events gained from increased
sensitivity outweighs the increased number of events
triggered by shot noise.

The trailing events of positive polarity in Figure 19
are a mystery to us. They suggest that there may
be an asymmetry in the pixel response latency to
positive and negative high-speed contrast changes.
Furthermore, the nature of the latency to positive
changes would be stochastic. We asked the ATIS
camera manufacturer Prophesee about this and about
the event readout ommissions in December 2019 but
did not receive an answer to the question before the
22nd of January 2020.

7. Conclusions

We constrained the scope of this work to under-
standing the limits of event cameras when sensing
fast movement. Our experimental event camera data
were generated by a single ATIS sensor.

A strongly lit square textured object of size 34×34
pixels with appearance similar to ArUco markers
can be reliably recognised in images reconstructed
from ATIS events when the object moves at most at
24 kpx/s image velocity. A global shutter camera
with exposure time 59 µs can recognise the same ob-
ject moving at 6× higher image velocity. We believe
the ATIS is limited by its event readout circuitry in
this case. However, we think that this issue may be
mitigated in future generations of event cameras.

When a dynamic scene generates the majority of
events in a small number of pixel rows (e.g. seven),
the event readout is more reliable. As a result, the
position of a tiny object as fast as 220 kpx/s can be
tracked at 100 kHz sampling rate by the ATIS.

The decrease in ATIS detection performance from
24 kpx/s to 13 kpx/s due to weaker lighting was likely
caused by the decreased signal-to-noise ratio. Pho-
ton shot noise triggers relative contrast change events
more likely when the light intensity is lower.

With the exception of tracking the position of a
tiny object translating almost horizontally, we con-
clude that we have not found an application where
the event camera is significantly better than the ordi-
nary frame-based camera.
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Abstract. In this work, we present movie2trailer -
a novel unsupervised approach for automatic movie
trailer generation. To our knowledge, it is the first-
ever application of anomaly detection to such a cre-
ative and challenging part of the trailer creation pro-
cess as a shot selection. One of the main advan-
tages of our approach over the competitors is that
it does not require any prior knowledge and extracts
all needed information directly from the input movie.
By leveraging the recent advancements in video and
audio analysis, we produce high-quality movie trail-
ers in equal or less time than professional movie ed-
itors. The proposed approach reaches state-of-the-
art in terms of visual attractiveness and closeness to
the “real” trailer. Moreover, it exposes new hori-
zons for researching anomaly detection applications
in the movie industry. The trailers, that were used in
evaluation stage are available at the following link -
https://bit.ly/2GbOj4R.

1. Introduction

With the massive expansion of online video-
sharing websites such as YouTube, Vimeo, and oth-
ers, movie promotion through advertisements be-
comes much more widespread than earlier. In con-
trast to previous decades, nowadays, trailers became
the most crucial part of the movie promotion cam-
paign. Since the trailer creation requires a lot of hu-
man efforts and creative decisions considering the se-
lection of scenes, montages, special effects, teams of
professional movie editors have to go through the en-
tire film multiple times to select each potential can-
didate for the best moment. This process can take
between 10 days to 2 years to complete [27]. On

the high-cost movies, there can be up to six different
trailer creation companies involved in this process.
During working on the creation of a movie trailer,
the editor makes multiple alternative versions of the
trailer, the best to be chosen by the target group of
specialists afterward. According to [27], there can
be created up to 200 variants of the trailer for the
target movie. These facts reveal what a significant
role a trailer plays in movie success and how much
resources it takes to produce a great trailer.

All these factors were the main stimulus for us to
make a research on the problem of automatic trailer
generation and raise its possibilities to an entirely
new level. In our opinion, the area of automatic
trailer generation has not been explored enough, and
many people underestimate the capabilities of AI ad-
vancements over the recent years and how they could
be utilized to create high-quality trailers similar to
the real one. We strongly believe that AI, to some
point, can simulate the expertise and creativity of
professional movie editors and reduce huge costs and
time consumption.

2. Related works

In this section, we present a short overview of
all main approaches for movie trailer generation.
The literature divides these methods into two main
groups: fully-automated methods and those with
human assistance. Until the advent of advanced
methods, video summarization techniques, such
as Clustering-based Video Summarization [9] and
Attention-based Video Summarization [19], were ap-
plied to the problem of automatic movie trailer gener-
ation. Because of this fact, all the approaches, which
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focus on movie trailer generation, were using video
summarization techniques as competitors in the eval-
uation stage. Similarly to them, as an addition, we
compare our approach with Muvee1 - commercial
video summarization software.

2.1. Video2Trailer (V2T)

Vid2Trailer (V2T) [12] is a content-based movie
trailer generation method. In this paper, the authors
set two main requirements for trailers properties to
be pleased: they must include specific symbols, such
as the title logo sequence shot or/and the main theme
music, and they should be visually and audibly at-
tractive to the viewers. As is stated, the algorithm sat-
isfies both of them. The complete pipeline consists
of three main stages: symbol extraction, impressive
components extraction, and reconstruction. Accord-
ing to the authors, at the time of the publication in
2010, V2T was more appropriate to trailer generation
than conventional movie summarization techniques.

2.2. Point Process-Based Visual Attractiveness
Model (PPBVAM)

In [29], the authors propose an automatic trailer
generation approach, which mainly focused visual
attractiveness. Based on common observation, au-
thors assume that during attractive scenes, viewers
mostly look at the same area of the screen and, on
the other side, lost their focus when boring scenes
appear. Consequently, they propose a surrogate mea-
sure of visual attractiveness based on viewers’ eye-
movement, named fixation variance, which is further
used as a metric for shots selection. To sum it up, in
this paper, authors propose the novel metric for visual
attractiveness named fixation variance and learn an
attractiveness dynamics model for movie trailers by
applying self-correcting point process methodology
[13, 22]. The authors mention that their approach
outperforms all the previous automatic trailer gener-
ation methods and reaches SOTA in terms of both
efficiency and quality.

2.3. Human-AI joint trailer generation

Unlike the two automatic trailer generation algo-
rithms mentioned above, IBM Research, in coop-
eration with 20th Century Fox, introduced the sys-
tem for first-ever Human-AI trailer creation collab-
oration, described in [26]. The primary purpose of
the system was to identify ten candidates among all

1https://www.muvee.com

movie scenes as the best moments. Further, the pro-
fessional filmmaker would edit and arrange these
moments to construct a comprehensive movie trailer.
The system was designed to understand and encode
patterns of emotions presented in horror movies. The
following steps were performed: Audio Visual Seg-
mentation, Audio Sentiment Analysis, Visual Senti-
ment Analysis, Scene Composition Analysis, Multi-
modal Scene Selection. The main system advantage
is that it can significantly reduce the involvement of
the film editor in the trailer creation process.

3. Approach

Based on our assumptions that by using anomaly
detection we can reveal the nonstandard frames
among others and that they are the ones that are regu-
larly used in professional movie trailers, we have cre-
ated a system for automatic trailer generation without
any previous knowledge about the target movie. One
of the main advantages of our approach is its flexibil-
ity in terms of visual appearance. By changing visual
features, we can easily put accents on what a user
wants to observe in the generated trailer. Figure 1
shows the high-level architecture of our approach.

3.1. Shot Boundary Detection

Shot boundary (transition) detection is one of the
major research areas in video signal processing. The
main problem it solves is the automated detection of
changes between shots in the video. Even though
cut detection appears to be an easy task for a hu-
man, it is still a non-trivial task for machines. Tak-
ing into account a vast number of different types
of transitions during shot changes, the problem re-
mains very challenging even nowadays. A lot of re-
searches [14, 30, 1] studying a comparison of vari-
ous shot boundary detection algorithms were made.
Still, there is no silver bullet for detecting all types of
transitions accurately. For our work, we decided to
go with an open-source Python library for detecting
scene changes in videos and automatically splitting
the video into separate clips, named PySceneDetect
[3]. It provides us with two different detection meth-
ods:

• Simple threshold-based fade in/out detection

• Advanced content-aware fast-cut detection

The second one appeared to be more appropriate for
our problem. The content-aware scene detector finds
areas where the difference between two subsequent
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Figure 1: High-level architecture of movie2trailer.

frames exceeds the set threshold value. In contrast
to the most traditional scene detection methods, the
content-aware detector allows detecting cuts between
the scenes, both containing similar content. With a
fine-tuned threshold, this approach can detect even
minor and sudden changes, such as jump cuts.

3.2. Feature engineering

Feature engineering without exaggeration can be
named the most important part of the whole pipeline.
This component directly influences the outcomes of
all further steps and consequently changes the ap-
pearance of the final generated trailer. The selection
choice of features leads to changes in what exactly
a person wants to see in a trailer. For example, if

we want to have a lot of scenes with explosions in
our trailer, we need to add a custom feature, which is
responsible for detecting explosions (can be done ei-
ther with the video or audio feature). Table 1 shows
all three types of features (visual, audio short-term,
and audio mid-term) that was calculated for the given
movie.

3.2.1 Visual features

Visual features were selected based on our under-
standing of what people usually expect to see in the
trailer. They can be divided into two subgroups:
color model features and object detection features.
For color features, we chose the HSL color model,
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Visual Audio short-term Audio mid-term

Delta hue Zero Crossing Rate

Mean and

standard deviation

of all 34

audio

short-term features

Delta saturation Energy

Delta lightness Entropy of Energy

Content value Spectral Centroid

Number of people Spectral Spread

Number of non-people objects Spectral Entropy

Total number of objects Spectral Flux

Area of detected people Spectral Rolloff

Area of detected non-people MFCCs

Total area of detected objects Chroma Vector

Chroma Deviation

Table 1: The chosen visual, audio short-term and audio mid-term features.

where H corresponds to hue, S - saturation, L - light-
ness. These properties represent a color spectrum in
different forms, which we consider an essential vi-
sual aspect of human perception. Additionally, we
include the content value parameter (mean between
Hue, Saturation, and Lightness) to this group of fea-
tures, as it takes the most significant role in our shot
boundary detection process. Hence we are inclined
to believe that content value provides information re-
sponsible for shot change detection. All the other
visual features can be attributed to another (object
detection) group. The creation of these features was
achieved by leveraging the capabilities of Faster R-
CNN [23], pretrained on MS COCO dataset [16]. As
a result, we were able to distinguish 80 classes of
the most common objects, such as a person, differ-
ent vehicles, various animals, and everyday things
in their natural context. From the extracted infor-
mation about objects on the frame, we construct six
features which can be split into quantity and area
groups. The first one was taken because of the hy-
pothesis that frames with many people correspond to
scenes with lots of action which keeps viewers’ at-
tention on the screen. Another group was formed un-
der the assumption that close-up shots are attractive
to view.

3.2.2 Audio short-term and mid-term features

In the majority of the cases, the most salient audio
parts are accompanied by outstanding visual scenes
and vice versa. Therefore, audio features are not less

important than the visual ones. In our algorithm we
have used a set of audio features previously intro-
duced in [6]. All audio features were retrieved by
exploiting the potential of the open-source library
for audio signal analysis named pyAudioAnalysis [6].
The main reason of this choice was that because of
the significant coverage of sound signal properties,
these features had been used in multiple audio anal-
ysis and processing techniques. Before the feature
extraction step, an audio signal is usually cut into
nonoverlapping windows (frames). For the short-
term feature sequences, we have used a frame size
of 50 msecs of an audio signal and a 1-second win-
dow size for the mid-term, correspondingly. As a
result of feature extraction, we get a sequence of
34-dimensional and 68-dimensional feature vectors
for short-term and mid-term audio signals, respec-
tively. Mid-term features accumulate statistics over
the short-term features for a more extended time pe-
riod to catch more general changes in the audio sig-
nal. The statistics include the mean and variance over
each short-term feature sequence. To sum it up, we
have gathered together all the essential properties of
the audio signal for both time and frequency domains
that could be further utilized for multiple purposes:
from detecting speech among other sounds, to deter-
mining the saliency of different parts of the audio.

3.3. Anomalous scenes selection

Anomalous scenes selection is a long process con-
taining multiple steps: anomaly detectors selection,
retrieval of anomaly frames for each type of fea-
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tures, choice of abnormal visual frames, audio short-
term and mid-term frames, merging them together
taking into an account the difference in duration of
each feature type frame, constructing final set of
video frames, scenes reconstruction, threshold-based
anomalous scenes selection. Figure 2 shows the com-
plete pipeline of this scene selection approach.

3.3.1 Anomaly detectors selection

Having extracted frame-level visual, short-term, and
mid-term audio features for the entire movie, now we
are ready to use them in the process of anomalous
scenes selection. As a first step, we need to determine
what anomaly detectors to use. Based on our experi-
ments, we have concluded, that by applying multiple
types of detectors, the result would be much more
credible than by using a single one, because of the
very different underlying logic between all of them,
the various types of data that generated features were
based on and possibly very different scale of features.
For that reason, we have chosen 8 anomaly detection
algorithms covering most of these cases, which could
be divided into 4 groups (2 detectors per each group):

• Linear models: MCD (Minimum Covariance
Determinant) [24], OCSVM (One-Class SVM)
[20].

• Proximity-based models: LOF (Local Out-
lier Factor) [2], HBOS (Histogram-based Out-
lier Score) [7].

• Ensembles: IsoForest (Isolation Forest) [17],
Feature Bagging [11].

• Neural networks: AE (fully-connected
AutoEncoder) [10], MO-GAAL (Multiple-
Objective Generative Adversarial Active
Learning) [18].

3.3.2 Anomalous frames selection

With the selected anomaly detectors, we run them
separately on each type of the features: visual, au-
dio short-term, and audio mid-term. Each of these
types includes its own set of features with diverse
frame duration. Since each of the detectors has its
pros and cons, we have introduced a voting system
to determine the most appropriate frames of each fea-
ture type. The frame is considered suitable if at least
five of eight detectors have chosen it as anomalous.

Having selected frames of each feature type, we re-
duce audio short-term and mid-term frames to their
corresponding visual frames taking into considera-
tion the duration periods of each feature group frame.
After that, We obtain a set of anomalous final video
frames by taking an intersection between all groups
of frames. These frames serves as the basis to iden-
tify trailer-worthy scenes from an input movie.

3.3.3 Scenes selection and reconstruction

With the already defined final set of visual frames
and information about each scene start and end
timestamps, we are ready to reconstruct scenes.
The primary constraints for scenes selection are
that scenes should have the maximum percentage of
anomalous frames and their total duration should be
not less than the length of the accompanying sound-
track. Through the visual examination of selected
scenes, we have determined that the scenes with the
highest number of abnormal frames are the most
valid candidates for making the trailer.

3.4. Shots rearrangement

Shots reordering is a beneficial step because it can
additionally improve the overall human perception of
the viewed video by maximizing the attractiveness
with some particular order of shots. By conducting
multiple experiments, we have tested a hypothesis
that lots of percussive timbres (claps, snares, drums)
accompany fast shots with lots of action. Further-
more, we had an assumption that there are some au-
dio features, that should be responsible for detecting
percussive sounds. Based on the idea, described in
[8], we have found out that by using zero-crossing
rate, we could be able to detect such type of sounds
quickly and accurately. With our experience watch-
ing numerous trailers, we have concluded that in
most trailers, the accompanied music increases its
intensity through the entire video. To validate that
idea, we have calculated the zero-crossing rate vec-
tor for each scene and tried different flows with sort-
ing by mean, median, max value of this feature. Af-
ter that, we have visually examined each of the gen-
erated trailers and compared them with the trailer,
where scenes are ordered as in the original movie.
Since the visual appearance of the arranged by au-
dio feature trailers was visually worse than the one
ordered by chronology, we consequently stuck to the
latter option.
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Figure 2: The detailed pipeline of anomalous scenes selection.

4. Evaluation and results

In this section, we evaluate our method
movie2trailer against all the leading opponents
for the automatic trailer generation problem:

• V2T [12] - Trailer generation method;

• Muvee - Commercial software for video sum-
marization;

• PPBVAM (Point Process-Based Visual Attrac-
tiveness Model) [29] - SOTA for automatic
trailer generation;

• RT - The original official real trailers;

• RTwS - The same real trailers without speech
information

4.1. Qualitative results

For the objective evaluation, we have taken a se-
ries of measures to avoid assessment bias. None of
the volunteers has seen any of the generated trailers
previously. None of the volunteers knew the order of
the methods while observing trailers. All final gen-
erated trailers were downscaled to the resolution of
other trailers (480x360) produced by our competi-
tors’ approaches, and all the speech pieces were re-
placed with the original soundtrack. Similarly to our
predecessors, on the input, we give the entire movie
without cutting any parts from it to remove spoilers.
With the steps above, we can be confident that all
the approaches are on an equal footing and would

69



be evaluated without any bias. Similarly to [12] and
[29], we have invited 23 volunteers with different
movie tastes and preferences to evaluate the visual
appearance of each testing trailer created with differ-
ent approaches by answering on the following three
questions:

• Appropriateness: “How similar this trailer
looks to an actual trailer?”

• Attractiveness: “How attractive is this trailer?”

• Interest: “How likely you are going to watch
the original movie after watching this trailer?”

For each question, a volunteer should give an in-
teger score of how much he/she agree on the partic-
ular statement on the Likert scale [15]: from 1 (the
lowest) to the 7 (the highest). Figure 3 shows the
overall results for all 3 testing movies: “The Wolver-
ine (2013)”, “The Hobbit: The Desolation of Smaug
(2013)”, “300: Rise of an Empire (2014)”. Authors
of the PPBVAM provided trailers 2 generated with
main competitors’ approaches for abovementioned
movies. We were limited to use only these three
movies since the reproduction of some parts of com-
petitors’ algorithms is infeasible. The results of the
poll show that our method is superior to V2T, Muvee
and PPBVAM in all three questions, indicating that
our approach to shot selection using anomaly detec-
tion is reasonable, and can provide us with such types
of shots that satisfy our subjective feelings and per-
ception.

We believe that RTwS and RT were usually pre-
ferred more by volunteers, because all trailers gener-
ated using automatic trailer generation methods were
deprived of speeches, subtitles, and special effects of
montages. Since the information that these factors
provide to improving visual attractiveness, we should
also supplement our system with these information
sources in the future.

4.2. Quantitative results

To the best of our knowledge, the only pub-
licly available method for video aesthetics assess-
ment - Semi-automatic Video Assessment System
[21]. This framework incorporates diverse set of vi-
sual features that are closely related to aesthetics:
Luminance, Optical Flow, Colourfulness and lots of
other. All these features are used by SVM [4] to de-
termine the level of aesthetics and interestingness of

2https://vimeo.com/user25206850/videos

Figure 3: The box plots of scores for various methods
on three questions considering Appropriateness, At-
tractiveness and Interest. The dark lines inside boxes
are medians and red diamonds are means. Dark
points outside of the whiskers are outliers.

70



metric V2T Muvee PPBVAM ours RTwS RT
mean 4.39 4.31 4.00 4.73 4.71 4.76
std 0.42 0.33 0.36 0.60 0.65 0.62

Table 2: Quantitative statistics of the NIMA scores.

the target video. To train that method, CERTH-ITI-
VAQ700 dataset [28] was used. In view of its large
size, the authors decided to use only 1 second of each
video, and as a result, their method does not work
well on longer videos. During our evaluation, it gave
aesthetics score 0 for all trailers, including real and
generated ones.

We propose a new approach for video aesthetics
evaluation based on evaluating the aesthetics of each
video frame separately:

1. Extract all the frames fi from the video.

2. Compute aesthetics score si for each frame fi.

3. Compute metrics (mean, standard deviation)
based on the obtained aesthetics scores si.

As a candidate for image aesthetics scoring func-
tion, we tested NIMA (Neural Image Assessment)
[5] and Will People Like Your Image? [25].

The results obtained using NIMA aesthetics
scores (from 1 to 10) (Figure 4 and Table 2) shows
that our approach works at the level of RT (real
trailer).

We have also applied the same approach for eval-
uation using another image aesthetics assessment al-
gorithm [25]. We have not included the results of this
scoring method in this section, because in all cases, it
evaluated real trailers worse than the generated ones.

The quantitative results obtained by the aesthet-
ics scoring systems shows that our method outper-
forms all existing automatic movie trailer generation
approaches and is at the level of the real trailers.

5. Conclusion

In this paper, we have presented an unsupervised
trailer generation method, named movie2trailer. Our
approach automatically creates high-quality trailers
by identifying anomalous frames relying on the se-
lected set of visual and audio features. A series of
quantitative and qualitative experiments show that
movie2trailer outperforms all the previous automatic
trailer generation methods in terms of visual attrac-
tiveness and similarity to the “real” trailer and thus is

Figure 4: Quantitative comparison of movie trailer
approaches based on NIMA aesthetics metric [5].

more appropriate to trailer generation than previous
techniques. We demonstrated the tremendous poten-
tial of the intelligent multidomain analysis system in
applying to such a profoundly creative task as creat-
ing a movie trailer. This research study opens doors
for further investigations of the anomaly detection
applications in the movie industry.
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Rogaška Slatina, Slovenia, February 3–5, 2020

Segmentation and Recovery of Superquadric Models using Convolutional
Neural Networks
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jaka.sircelj@fe.uni-lj.si

Input image

Instance Segmentation

Isolated segments

Reconstructed
superquadrics

Scene reconstruction

Parameter
prediction

Segmentation and Parameter Recovery

Figure 1: We study the problem of segmenting and recovering superquadric models from depth scenes. Our
approach uses instance segmentation with Mask-RCNNs followed by superquadric-parameter estimation from
incomplete data with a standard CNN (left part of the figure). Using the recovered superquadric models we are
able to efficiently reconstruct the original depth scene (right part of the figure).

Abstract. In this paper we address the problem of
representing 3D visual data with parameterized vol-
umetric shape primitives. Specifically, we present
a (two-stage) approach built around convolutional
neural networks (CNNs) capable of segmenting com-
plex depth scenes into the simpler geometric struc-
tures that can be represented with superquadric mod-
els. In the first stage, our approach uses a Mask-
RCNN model to identify superquadric-like structures
in depth scenes and then fits superquadric models
to the segmented structures using a specially de-
signed CNN regressor. Using our approach we are
able to describe complex structures with a small
number of interpretable parameters. We evaluated
the proposed approach on synthetic as well as real-
world depth data and show that our solution does
not only result in competitive performance in com-
parison to the state-of-the-art, but is able to decom-
pose scenes into a number of superquadric models

at a fraction of the time required by competing ap-
proaches. We make all data and models used in the
paper available from https://lmi.fe.uni-lj.si/

en/research/resources/sq-seg.

1. Introduction

Representing three-dimensional visual data in
terms of parameterized shape primitives represents
a longstanding goal in computer vision. The inter-
est in this problem is fueled by the vast number of
applications that rely on concise descriptions of the
physical 3D space in various sectors ranging from au-
tonomous driving and robotics to space exploration,
medical imaging and beyond [13, 21, 14].

Past research in this area has looked at different
models that could act as volumetric shape primitives,
such as generalized cylinders [28] or cuboids [27, 17,
11], but superquadrics established themselves as one
of the most suitable choices for this task [1, 26, 10,
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25, 18, 20] due to their ability to represent a wide
variety of 3D shapes, such as ellipsoids, cylinders,
parallelopipeds and various shapes in between. For-
mally, superquadrics are defined by an implicit 3D
closed surface equation, i.e.:
((

x− x0
a1

) 2
ε2

+

(
y − y0
a2

) 2
ε2

) ε2
ε1

+

(
z − z0
a3

) 2
ε1

= 1 (1)

where a1, a2, a3 define the bounding box size of
the superquadric, ε1 and ε2 define it’s shape and
(x0, y0, z0)

ᵀ represent the center of the superquadric
in a reference coordinate system [10]. Existing tech-
niques for recovering superquadric models typically
involve costly iterative parameter-estimation proce-
dures that further increase in complexity if more
than a single superquadric needs to be fitted to a
scene [12, 10]. With complex scene geometries, su-
perquadric recovery must necessarily be combined
with segmentation techniques capable of partition-
ing the scene into simpler superquadric-like struc-
tures. This, however, puts a considerable compu-
tational burden on the fitting procedure as state-of-
the-art techniques for recovery-and-segmentation of
multiple superquadric models are typically extremely
resource demanding.

With recent advances in computer vision and more
importantly deep learning, it is possible to design so-
lutions for simultaneous segmentation and recovery
of superquadrics that are much more efficient than
existing solutions. In this paper, we, therefore, revisit
the problem of representing complex depth scenes
with multiple superquadrics and develop an efficient
solution for this task around convolutional neural net-
works (CNNs). Specifically, we assume that small
superquadric-like structures in range images can be
modeled as instances of a specific class of objects,
and, therefore, train a Mask-RCNN [7] model to seg-
ment the scene, as illustrated in Fig. 1. The results of
this instance segmentation are then used as input to a
second CNN that recovers superquadric parameters
for each of the identified superquadric-like objects.
Because the identified superquadric-like objects may
be partially occluded, we account for this fact during
training and learn the parameters of the second CNN
in a robust manner. We evaluate the performance of
our approach on simulated, but also real-world range
images. We achieve segmentation and recovery re-
sults comparable to the state-of-the-art, but achieve
a considerable speed-up, which makes the developed
solution suitable for a much wider range of applica-

tions. We note that in this paper we approach a con-
strained superquadric recovery problem, where we
assume that the depth scene can be approximated by
a number of unrotated superquadric models.

Our main contributions in this paper are:

• We present a novel solution for segmenta-
tion and recovery of multiple (unrotated) su-
perquadric models from range images built
around CNNs and evaluate it in experiments
with simulated and real-world depth data.

• We show that existing Mask-RCNNs may be
used for identifying superquadric-like structures
in range images in an efficient manner.

• We demonstrate that superquadrics can be re-
covered from partial depth data using a simple
CNN-based regressor and the parameter estima-
tion errors are comparable to the error produced
by state-of-the-art techniques used for this task.

2. Related work

Existing techniques to scene segmentation with
superquadrics can in general be divided in one of two
groups: i) techniques that approach the problem by
segmenting the scene and recovering superquadrics
at the same time (segment-and-fit), and ii) techniques
that first segment the scene and then fit superquadric
models to the segmented parts (segment-then-fit). In
this section we briefly review both groups of tech-
niques with the goal of providing the necessary con-
text for our work. For a more comprehensive cover-
age of the subject, the reader is referred to [10].

Segment-and-fit. Techniques from this group
typically combine the segmentation and superquadric
recovery stages and often rely on superquadric mod-
els to guide the segmentation [5, 12, 10, 9]. Due to
the fact that segmentation is performed with the final
scene representations (i.e., the superquadric) meth-
ods from this group are considered highly robust.
However, on the down side, they often also induce
a considerable computational burden on the segmen-
tation procedure. Recently, a CNN-solution [20] that
falls into this group was proposed, but unlike the ap-
proach presented in this paper, was limited to seg-
mentation of predefined classes of objects.

Segment-then-fit. Techniques from this group
follow a two-stage procedure, where the data is
first segmented up front and independently of su-
perquadric recovery [10]. Thus, the entire procedure
is broken down into two independent parts. Exam-
ples of techniques from this group include [6, 22, 2,
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Figure 2: Example images from the generated dataset. The top row shows examples of the rendered images
with different numbers of superquadric in the scene. The lower row shows examples of the corresponding
segmentation masks. The figure is best viewed in color.

23]. The solution described in this work also fol-
low the segment-then-fit paradigm, but as we show in
the experimental section result in competitive perfor-
mance compared to a state-of-the-art approach from
the segment-and-fit group that is in general consid-
ered to be more robust.

3. Dataset

In order to train our instance segmentation and pa-
rameter estimation models, we require a large dataset
of depth scenes with appropriate ground truth labels.
Since no such datasets are publicly available, we gen-
erate our own and make it publicly available for the
research community. In this section we present the
dataset creation procedure and discuss the character-
istics of the generated data.

3.1. Prerequisites

In this work we follow the methodology of Oblak
et al. [18] and focus on unrotated superquadric mod-
els. Thus, we only try to recover the 8 open parame-
ters from Eq. (1) for each superquadric model and
omit rotations, which introduce ambiguities in the
superquadric-recovery process [18]. The main goal
of this work is to extend the superquadric recovery
method from [18] to depth scenes with complex ge-
ometry that need to be represented with multiple su-
perquadrics. Consequently, we fix the rotation of the
objects in our dataset and render them in an axono-
metric projection that ensures that three sides of the
objects are always visible in the rendered images.

3.2. Dataset creation

We synthesize our dataset by rendering range im-
ages with multiple superquadrics in the scene. To
construct the range images we create a custom ren-
dering tool that accepts multiple superquadric pa-
rameter sequences. The renderer then constructs the

range image of a scene by finding the surface points
of the superquadrics and choosing the closest point to
the viewport, if there are overlapping superquadrics
in the line of sight. The scene is constrained inside
a 256 × 256 × 256 grid, where the first two dimen-
sions represent the width and height of the resulting
image, while the last dimension represents the depth.
The scene is then mapped to the zero depth plane, re-
sulting in a 256 × 256 range image, where its pixel
indexes i, j correspond to the x, y coordinates in the
3D scene, while the pixel intensity relates to the z
depth in the scene.

To generate a dataset with representative su-
perquadric objects, we uniformly sample the su-
perquadric parameters similarly to [18]. How-
ever, uniformly sampling the position and size of
superquadrics independently from their neighbors
causes dramatic overlaps and intersections in the
scene, which hides a large number of objects. We
solve this by constraining the allowed intersection-
over-union volume between pairs of superquadrics
in each scene, where the volume is approximated
using the superquadrics bounding-box. Following
this requirement we first sample the number of su-
perquadrics in the scene from the discrete uniform
distribution U(1, 5). Then, for each scene, we iter-
atively sample superquadric parameters. If the new
superquadric intersects with the superquadrics al-
ready in the scene, we discard it and sample again.
This procedure continues until there are as many su-
perquadrics on the scene as determined in the initial
sampling step. Each superquadric has its size param-
eters sampled from a continuous uniform distribution
U(25, 76) and the shape parameters from U(0.01, 1)
limiting the appearance of the rendered models to
convex shapes, which are also more representative
of the real world. We sample the x0 and y0 center
coordinates from U(88, 169) while the z0 coordinate
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Table 1: Dataset summary.

#Superquadrics 1 2 3 4 5 Any
#Train Images 15882 16108 15930 15983 16097 80000
#Validation Images 3989 3944 4020 3948 4099 20000
#Test Images 3949 4023 3996 4059 3973 20000

is sampled from a tighter region U(100, 150). This
is done to constrain the vertical overlap between the
superquadrics in the scene.

Along with the range image we also render a
ground truth segmentation mask image of the scene,
by coloring the different visible parts of the su-
perquadrics with a different shade of gray. This
ground truth information is used for training and
evaluating the segmentation model.

3.3. Dataset totals

The complete dataset contains 120000 rendered
scenes and corresponding segmentation masks. We
also store range images of individual superquadrics
in each scene in the dataset along with their param-
eters. For the experiments we split the dataset into
three disjoint parts: for training, validation and test-
ing. We use the training set to learn the parameters of
our models, the validation set to observe over-fitting
issues during training and the test for the final perfor-
mance evaluation. A few illustrative examples from
the generated dataset together with the correspond-
ing segmentation masks are shown in Fig. 2 and a
high-level summary of the dataset and experimental
setting is given in Table 1.

4. Superquadric recovery methodology

In this section we now present our approach to
segmentation and recovery of multiple superquadrics
using CNN models.

4.1. Segmentation

As our range images contain multiple objects of
the same class (i.e., superquadric-like objects), we
resort to instance segmentation to identify parts of
the range images belonging to structures that can be
represented with superquadrics. One of the most
popular models for instance segmentation is Mask
R-CNN [7], which operates in a two-stage fashion.
In the first stage, it uses a region proposal network
(RPN) that finds candidate regions in the image.
In the second stage, the final predictions are made.
Here, three model heads are used: one for detection
(two-class classification: object present or not), one

Table 2: Architecture of the CNN regressor used for
superquadric parameter estimation.

# Output size Layer operation #kernels, size, stride
1 128× 128 Conv2D+BN+ReLU 32, 7× 7, s2
2 128× 128 Conv2D+BN+ReLU 32, 3× 3, s1
3 128× 128 Conv2D+BN+ReLU 32, 3× 3, s1
4 64× 64 Conv2D+BN+ReLU 32, 3× 3, s2
5 64× 64 Conv2D+BN+ReLU 64, 3× 3, s1
6 64× 64 Conv2D+BN+ReLU 64, 3× 3, s1
7 32× 32 Conv2D+BN+ReLU 64, 3× 3, s2
8 32× 32 Conv2D+BN+ReLU 128, 3× 3, s1
9 32× 32 Conv2D+BN+ReLU 128, 3× 3, s1
10 16× 16 Conv2D+BN+ReLU 128, 3× 3, s2
11 16× 16 Conv2D+BN+ReLU 256, 3× 3, s1
12 16× 16 Conv2D+BN+ReLU 256, 3× 3, s1
13 8× 8 Conv2D+BN+ReLU 256, 3× 3, s2
14 16384 Flatten N/A
15 8 Dense N/A

for regression of the bounding boxes, and one for
prediction of the binary segmentation mask.

In our implementation, we use a ResNet-101 [8]
backbone as the feature extractor along with a fea-
ture pyramid network (FPN) that makes it possi-
ble to exploit multiple scales of the feature maps.
These features get fed trough a region proposal net-
work which predicts object scores and their bounding
boxes at each feature position. The predictions are
then filtered by a non-maximum suppression algo-
rithm, which removes overlapping bounding boxes.

The RPN bounding boxes and the FPN features
get combined using the RoIAlign operator and fed
into the three network heads to obtain the final class
(object present or not), bounding box, and binary
mask for each region proposal. Here the classifica-
tion scores are used for the elimination of any back-
ground instances. For more information on Mask R-
CNNs, the reader is referred to [4, 3, 24, 15, 7].

4.2. Parameter estimation

Once the scene is segmented and superquadric-
like objects are identified in the input images, we
feed the predictions into a CNN regressor for param-
eter estimation. We follow the work of [18] and use a
regression model derived from the popular VGG ar-
chitecture [19]. The model is designed as a 13 layer
CNN with a fully-connected layer of size 8 on top.
Each conv layer is followed by batch normalization
and a ReLU activation, which reduces overfitting and
allows the model to better generalize. The model is
summarized in Table 2.

The input to the CNN regressor is a range im-
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(a) 100% (b) 93.8% (c) 93.3% (d) 86.9% (e) 80% (f) 76.7% (g) 55.7% (h) 52.5% (i) 40%

Figure 3: Predicted segmentation masks from the Mask R-CNN model. The images are ordered in columns
of three. Three good predictions (left), three average predictions (middle) and three bad predictions (right). In
the first row we show range images with overlaid ground truth masks. The second row shows masks obtained
with our segmentation model. Under the images we also report the mAP value for the segmentation. Most of
the predictions are sufficient, even in the average subsection of the predictions. We observe that fine details are
elusive to the model, such as disconnected masks (h) or narrow subparts of masks (e,f). Best viewed in color.

age containing a single superquadric-like instance
and the output is a prediction of 8 parameters de-
scribing the size, shape and position, of the su-
perquadric representing the input data, i.e., y =
[a1, a2, a3, ε1, ε2, x0, y0, z0]. Different from [18], the
inputs to our model are not necessarily complete su-
perquadrics, but automatically segmented range data,
where parts of the object may be occluded due to
overlap with other objects in the scene. Thus, we
account for this in our training procedure and learn
the parameters of our regressor by utilizing occluded
data. As we show in the experimental section this
allows us to quite efficiently estimate superquadric
parameters even if part of the data is missing either
due to occlusions or errors in the segmentation steps.

5. Experiments and results

5.1. Instance segmentation

The Mask R-CNN backbone is initialized with
a ResNet-101 structure [8], pre-trained on the MS
COCO dataset [16]. The training is split into two
stages. In the first stage, we lock the training of the
backbone and set the learning rate to 10−3, with mo-
mentum of 0.9. In the second stage we unlock the
backbone and fine-tune the network with a smaller
learning rate of 10−4. We present the standard mean
average precision (mAP) scores of the instance seg-
mentation in Table 3, as used in the COCO challenge.
The model is trained on 80k training range-images of
superquadric scenes, with a batch size of 2. We use
an additional 20k images for validation and 20k im-
ages for testing. The model is trained on an NVIDIA
GTX TITAN X GPU.

Table 3: Instance segmentation results. mAP50 and
mAP75 denote scores computed at 50% and 75% IoU
respectively, while mAP denotes the mean average
precision averaged over IoU values from 50% up to
95%, taken at 5% steps.

mAP mAP50 mAP75

85.57 97.33 95.95

In Table 3 we report the segmentation results using
our Mask R-CNN model. We can see that average
precision at Intersection-over-Union (IoU) thresh-
olds 50% and 75% are higher than the averaged mAP
over multiple IoU thresholds. This indicates that the
model fail only at the highest intersections, segment-
ing the objects with good detail and precision.

In Figure 3 we present some examples of predicted
masks for the training set. Most of the objects have
been segmented with sufficient precision. On aver-
age, the model only misses smaller and highly oc-
cluded objects (Figures 3e and 3f). It also struggles
with objects visually cut in half because of overlaps
(Figure 3h). In these cases we either get multiple sep-
arate instance segments or the model fails to detect
one of the parts completely. We suspect this might be
caused by significant bounding box overlap between
the foreground and background objects. The latter
causing the former to get suppressed by the Mask R-
CNN non maximum suppression algorithm.

5.2. Parameter prediction

We initialize the parameter prediction model with
the weights from [18], as the same neural network
architecture was used in that work. To train the pa-
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Table 4: Parameter-prediction performance. The table shows MAE scores for each of the 8 superquadric
parameters. The rows show results on different subsets of segmented range images test set, defined by the
number of superquadrics the parent scene. The “All” row shows scores averaged over the entire set.

#sq Dimensions [0-256] Position [0-256] Shape [0-1]
a1 a2 a3 x0 y0 z0 ε1 ε2

All 1.134 1.187 1.248 1.953 1.864 2.639 0.017 0.017
1 0.515 0.555 0.537 0.957 0.925 2.154 0.009 0.008
2 0.681 0.736 0.728 1.165 1.093 2.181 0.011 0.010
3 0.930 0.984 1.036 1.528 1.448 2.386 0.013 0.013
4 1.580 1.646 1.708 3.066 2.966 3.110 0.026 0.025
5 1.201 1.241 1.357 1.776 1.669 2.685 0.017 0.017

rameters of the model we use the ADAM minibatch
stochastic gradient descent optimisation algorithm,
which minimizes the MSE loss. We set the learn-
ing rate of the algorithm to 10−3 and keep the rate
constant during training. As already indicated above,
we use the segmentations produced by our Mask R-
CNN model as the basis for the training to make the
model robust to missing data. We only train on seg-
mentations with an IoU higher than 50% compared
to the ground truth masks. The model is trained for
63 epochs, with varying batch sizes constructed al-
ways from batches of 4 scene range images, giving
us a maximum batch size of 20 segmented range im-
ages. We report performance for the CNN regressor
in terms of the Mean Absolute Error (MAE) between
the predicted and ground truth parameters. This mea-
sure was sufficient for our problem, since we predict
superquadric parameters for superquadric visualiza-
tions, where the matching of parameters correlates
with the 3D matching of the objects.

In Table 4 we present the MAE scores for each pa-
rameter on a test set of 20000 images. In addition to
the MAE score for the entire test set, we also show
separate MAE scores for scenes with different num-
bers of superquadrics. On average the model per-
forms very well, predicting position and size in the
order of one pixel accuracy compared to the [0, 256]
range of possible values. The shape parameters ε0
and ε1 also achieve about 0.017 mean absolute error
which is also small compared to the [0, 1] range of
possible values. The model performs better in scenes
with a smaller number of superquadrics since more
superquadrics in the scene typically result in greater
intersections and occlusions. Table 4 shows an al-
most monotonous increase in MAE as the number
of superquadrics is increased, the only disparity is a
larger error in scenes with 4 objects than in scenes
with 5.
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Figure 4: Box-and-whiskers plots of the relative error
for each parameter.

In Figure 4 we show box-and-whiskers plots of
the relative errors between ground truth and the pre-
dicted parameter values over the entire test set of seg-
mented range images. We see that most of the error
mass is close to the mean. The positional parame-
ters are predicted with especially small variance in
their errors. We also observe that the z axis size pa-
rameters are on average slightly overestimated. This
seems to get compensated by an underestimation of
the z axis position, thus aligning the top surface of
the ground truth and the predicted superquadrics.

Scenes with larger numbers of superquadrics are
harder to segment, occasionally giving our param-
eter prediction model highly corrupted segmenta-
tion masks, that can either blend range information
from multiple objects into one segmented range im-
age or return smaller subsets of the actual masks.
On such corrupt segmented range images our pre-
diction model naturally performs much worse than
on cleaner segmentations, resulting in a somewhat
heavy-tailed error distribution. We show this in Fig-
ure 5 where we plot the error distribution for all
parameter predictions and subsets over the number
of superquadrics in the scene. We also show how
our segmentation model performs on each subset by
showing the distribution of IoU values for its pre-
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Figure 5: Our methods error distribution for each parameter. Each row shows results obtained from the 5
subsets scene images, each with a different number of superquadrics in its scenes. We also add the last column
showing the IoU distribution of the predicted masks with Mask R-CNN.

Figure 6: Qualitative comparison with the state-of-the-art: Input range images of (scanned) real-world objects
(first column), Our reconstructions (second column), Absolute difference between the ground truth and our re-
construction (third column), Reconstructions by Leonardis et. al. [12, 10] (fourth column), Absolute difference
between the ground truth and reconstruction by Leonardis et. al. [12, 10] (last column).

dicted segmentations. The distributions move away
from a Gaussian shape quickly when more than one
superquadric is present in the scene. The tails be-
come larger when we increase the number of ob-
jects in the scene. As mentioned earlier, this can
be explained by the inefficiency of the segmentation
model, as the model also performs worse with greater
numbers of objects in the scene - the IoU distribution
becomes more and more skewed, with a heavier tail.

We also compare our approach to the state-of-the-
art segmentation and superquadric recovery method
from [12, 10] on range-images of real objects. For
this experiment, we used range-image scans of real

objects taken by Oblak et. al. for their work in [18].
We constructed range image scenes of multiple ob-
ject by shifting the original images in pixel space
and combining them using the max operator. The
original range images, and their superquadric recon-
structions using our approach and the state-of-the-art
method from [12, 10] are shown in Figure 6. The it-
erative method from [12, 10] performs comparably to
our solution, as we can see from the examples. Our
method achieved 2.79 MAE calculated over all pixels
differences from all pairs of ground truth and recon-
structed images while [12, 10] scored 1.78. However,
we note that the iterative algorithm of the original
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method results in much higher processing times. Our
method performs similarly in terms of reconstruc-
tion quality, but computes the segmentations and pa-
rameter predictions with a 100× speed up over the
state-of-the-art approach. Specifically, the iterative
method converges in about 10 s on one image while
our method needs 0.11 s on a GPU. While our meth-
ods advantage against [12, 10] is that we can paral-
lelize its computations, it still performs faster on a
single threaded CPU with about 5 s per image.

6. Conclusion

We have presented a CNN-based solution for seg-
mentation and recovery of multiple superquadrics
from range images. We have shown that the designed
solution is able to efficiently decompose complex
depth scenes into smaller parts that can be modelled
by superquadric models. Our approach was shown to
produce scene reconstruction on par with a state-of-
the-art method from the literature, while ensuring a
significant speed up in processing times. As part of
our future work, we will extend the solution to ac-
count for rotated superquadrics as well.
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