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Abstract. We propose a semi-supervised approach
to learning by formulating the optimization as con-
strained gradient descent on a loss function that in-
cludes unsupervised terms. The method is demon-
strated on semi-supervised optical flow training that
promotes photo-consistency and smoothness of the
flow. We show that the unsupervised objective sig-
nificantly improves the estimation on a distant do-
main while maintaining the performance on the orig-
inal domain. As a result, we achieve state-of-the-art
results on the Creative Flow+ dataset among CNN-
based methods that did not train on any samples from
the dataset.

1. Introduction

Supervised learning of CNN methods achieves
state of the art results on all major optical flow
datasets. However, when presented with samples that
are distant to their training set, they often produce in-
consistent estimates. We find that unsupervised opti-
cal flow methods, possibly due to their less domain-
dependent objective, perform better in this setting.
However, they fall short of supervised methods when
enough labeled training data is available. We aim to
combine the performance of the supervised methods
with the robustness of the unsupervised methods.

This paper presents a new semi-supervised train-
ing approach that combines supervised and unsuper-
vised objectives. The training optimization is for-
mulated as a constraint gradient descent that takes
gradients from both losses; however, skips all unsu-
pervised samples that lead to worse performance on
the supervised samples i.e., all unsupervised gradi-
ents that have a negative dot product with the super-
vised gradient are omitted. The method is tested on
optical flow estimation, and it is shown that it makes
the network perform close to the unsupervised meth-
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Figure 1: Optical flow on a distant domain without/with semi-
supervision. Left: A sample pair of images I1, I2 from the
Creative Flow+ (CF+) dataset, their difference ∆I21 and opti-
cal flow color coding wheel. Notice texture changes on both
the object and background. Middle: Foreground optical flow
for supervised and semi-supervised models with GT. Right: I2
warp to I1 showing geometric consistency of the flow. The Sin-
tel fine-tuned model (a) corrupts optical flow in major parts. The
proposed constrained semi-supervision on Sintel domain alone
(b) improves the estimates. Further improvement is achieved by
adding unlabeled CF+ samples (c).

ods on data from a distant domain while maintaining
the performance on the labeled domain.

More specifically, we demonstrate this behavior
on a recently published Creative Flow+ dataset [24].
The dataset features artistic-like scenes with untex-
tured regions or objects with changing texture. All



supervised CNN-based approaches fine-tuned on an-
other domain (Sintel) produce highly inaccurate es-
timates in this setting. The method is able to re-
train a supervised model mitigating this effect. We
demonstrate that even without using the distant do-
main samples, we already get a significant perfor-
mance gain. Upon introducing the images from the
distant domain (with no GT), we are able to bring the
error on the distant domain even lower.

The contributions of this paper are the following.
First, a novel method to combine supervised and un-
supervised objectives is presented. The training is
formulated as constrained gradient descent on a loss
function that includes terms from unsupervised train-
ing - i.e., in the optical flow estimation photocon-
sistency, smoothness, and forward-backward consis-
tency.

Second, we demonstrate that when supervised
training leads to abrupt estimates on a distant do-
main, introducing the unsupervised objective using
the proposed semi-supervised method improves re-
sults on the distant domain. However, the model per-
formance on the supervised domain does not drop.
This effect is observed even without using any sam-
ples from the other domain.

Finally, we show that adding unlabeled samples
from the distant domain improves the results on the
distant domain even more.

2. Related work

Supervised training. FlowNet [7] was the first
work to introduce end-to-end supervised training of
optical flow. The authors proposed two CNN ar-
chitectures as well as a large synthetic dataset Fly-
ingChairs that was needed to train the network in
a supervised fashion. This work demonstrated that
neural networks are able to act as an optical flow es-
timator.

Many other architectures and training techniques
were proposed since [12, 10, 28, 21, 27, 11] im-
proving results on standard optical flow benchmarks
[4, 8, 20] and surpassing the classical approaches.

Though our method applies to any end-to-end
trainable network, we chose to build our experiments
on PWC-Net [28] architecture, since it is a popu-
lar choice among current approaches. It combines
a pyramidal approach with correlation cost volume
on each level. Furthermore, the correlation is done
on encoder features instead of images.

Unsupervised/self-supervised training. There is
also a class of unsupervised or self-supervised tech-
niques that aim to train the optical flow network with-
out any ground truth, just from frame pairs (or more
frames) themselves [1, 33, 23, 2]. This means they
do not rely on any labeling, which in the optical flow
context is nontrivial to obtain, and can thus be trained
on potentially unlimited size of data.

They apply the same principles from the famous
Horn–Schunck method [9] or many related [26] to
create a training signal for the network. The main
task is to assess the optical flow quality without any
ground-truth. This is mostly done by measuring
the photometric difference between the source image
and the back-warped target image. Other objectives,
such as smoothness or consistency between forward
and backward flow, are added.

This work is further developed by adding occlu-
sion reasoning [30, 19, 13] and so-called data dis-
tillation [16, 17]. Furthermore, attempts to train al-
gorithms that combine optical flow with other tasks
were done [32, 22, 14].

Fully unsupervised training is, however, not able
to compete with the supervised training on the con-
ventional optical flow datasets. They struggle with
photometric deviations like occlusions, motion blur,
reflections, et cetera. Even the ability to use much
more training data than supervised approaches does
not compensate.

Semi-supervised training. If we do omit cases
of unsupervised pre-training and supervised fine-
tuning, there were only a few attempts in the optical
flow context to create a combination of supervised
and unsupervised training.

A simple supervised and unsupervised loss com-
bination was presented in [31, 34]. Lai et al. [15]
present an approach based on a Generative Adver-
sarial Network. The discriminator is trained to
recognize the photometric difference map between
the source and target image back-warped by either
ground truth or estimated optical flow. Further, end-
point error loss is applied alongside the adversarial
loss for all labeled data.

3. Method

The goal is to combine supervised and unsuper-
vised training. In this section, the proposed con-
strained semi-supervision method is first introduced,
then the loss terms used throughout the work are
listed.



3.1. Semi-supervision: constraint gradient de-
scent

At each iteration during training, the network is
evaluated on one pair of frames with ground-truth
(supervised sample) and N pairs without (unsuper-
vised samples). The gradient from the supervised
sample poses a reasonable (but not optimal) con-
straint that skips all unsupervised samples leading to
worse performance on the supervised samples.

Let Θ be the network parameters. By back-
propagation, the gradient

Gs = ∇Lsup(Θ) (1)

is computed for the supervised sample and

Gn
u = ∇Lun(Θ) (2)

for n-th unsupervised sample1.
Gs is used as the constraining vector. Positive dot

product with the constraining vector ensures that the
added Gi

u does not have an orientation opposite to
Gs. Thus, the parameter update vector is defined as:

G = Gs +
∑

∀i:Gi
u·Gs>0

λMGi
u (3)

Thus, by updating the parameters by G, the value of
Lsup linearized at Θ will not rise. However, some
updates from unsupervised loss are still considered.

3.2. Loss terms

Let I1, I2 be two consecutive frames and fGT,1→2

ground truth forward flow. Let l = 1 . . . 5 be the flow
pyramid scale from the largest 1⁄4 to the smallest 1⁄64 of
the input image size. Let fl1→2, fl2→1 be the estimated
forward and backward flow on the scale l. By I l and
flGT we denote an image resp. flow down-sampled to
the scale l.

Supervised loss is the standard L2 endpoint-error
loss [28]:

Lsup(f1→2) =
5∑
l=1

αl
∑
x∈P

∥∥∥fl1→2(x)− flGT,1→2(x)
∥∥∥
2
.

(4)
Data term. The data term is based on [19]; how-

ever, we drop the occlusion-awareness since it has

1To ease the notation, we omit some obvious arguments from
the loss function.

not proven beneficial in our setting. The term is de-
fined as

LlD(fl1→2, f
l
2→1) =∑

x∈P
ρ
(
fD
(
I l1(x), I l2(x + fl1→2(x))

))
+

ρ
(
fD
(
I l2(x), I l1(x + fl2→1(x))

))
,

(5)

where ρ(x) = (x2 + ε2)γ (default γ = 0.45) is
the Charbonnier penalty [26] that increases robust-
ness to outliers. fD measures the photometric differ-
ence between two pixels. The experiments are done
with both brightness constancy constraint (per chan-
nel) [33] and the ternary census transform adjusted
for loss function in [19].

Smoothness term. Second order smoothness con-
straint is employed as in [19], since it has been
proved to be beneficial in classical flow estimation
methods , [29]. To decrease over-smoothing on ob-
ject edges, we combine it with edge awareness [13].

LlS(fl1→2, f
l
2→1) =∑

x∈P

∑
(s,r)∈N(x)

σ
(
I l1, f

l
1→2, s, x, r

)
+

σ
(
I l2, f

l
2→1, s, x, r

)
,

(6)

whereN(x) contains horizontal, vertical and both di-
agonal neighborhoods of x and σ measures the edge-
aware smoothness:

σ(I, f,s, x, r) =

ρ
(
f(s)− 2f(x) + f(r)

)
·

· exp
(
− ‖I(x)− I(s)‖2

)
·

· exp
(
− ‖I(x)− I(r)‖2

)
.

(7)

We assume ρ(·) computes the average over the penal-
ties from each component.

FW-BW consistency. Adding the forward-
backward consistency term also proved to help with
learning the flow [19]:

LlC(fl1→2, f
l
2→1) =∑

x∈P
ρ
(

fl1→2(x)− fl2→1

(
x + fl1→2(x)

))
+

ρ
(

fl2→1(x)− fl1→2

(
x + fl2→1(x)

))
.

(8)

Unsupervised loss is defined as a weighted sum
over loss terms and pyramid levels:

Lun =
5∑
l=1

αl
(
LlD + λSL

l
S + λCL

l
C

)
(9)

where αl is the pyramid scale weight.



4. Experiments

This section describes the structure of experiments
and the technical details. Results are discussed in the
next section.

Overall, the experiments examine the domain
transfer ability of supervised, unsupervised and
semi-supervised training from Sintel dataset [4] to
Creative Flow+ [24]. First, supervised and unsuper-
vised models are tested and their performance is ob-
served. Afterwards, the proposed constrained semi-
supervision is put to the test in two settings - limited
to samples from Sintel domain or also including un-
labeled frames from CF+. For comparison, we try
to pose the semi-supervision as a simple loss com-
bination and also test a baseline supervised on both
Sintel and CF+. All experiments were done with the
popular PWC-Net [28] architecture.

To denote the experiments, a system of abbrevia-
tions in the format “[training method]: ([datasets])”
is used. Training method is either supervised (Sup),
unsupervised (Unsup) or semi-supervised (Semi).
Plus sign “+” denotes the training was done on a
combination of two datasets. With semi-supervised
training, arrow “→” separates a dataset serving as
the source of supervised samples from a dataset of
unsupervised samples.

4.1. Datasets

In the experiments, we use the following datasets.
The letter in the bracket next to the dataset name is
the abbreviation used in the experiments.

Sintel (S) [4]. To avoid complicated online eval-
uation, a 90-10 split of the publicly-available data to
training and testing parts was created yielding 1562
train and 2 × 87 test samples (separately clean and
final pass). In training, both Clean and Final passes
are combined.

Sintel movie (Sm). All frames from the origi-
nal movie [5] were extracted for unsupervised and
semi-supervised training, similarly to [17]. To cope
with compression artifacts, we downscaled the 4K
resolution images to 1152 × 648. Cuts between
scenes, where no optical flow exists, were avoided
with PySceneDetect [6]. Moreover, too dim (typi-
cal for fade ins/outs) or too similar consecutive im-
ages were detected using pixel-wise brightness resp.
brightness difference and excluded. Altogether, 9372
samples were created.

KITTI 2015 (K) [20]. Testing is done on all
200 annotated samples. Unsupervised methods train

on 13K samples from the multiview extensions of
KITTI’15 and ’12 [8]. Frames from the annotated
pairs are excluded.

Creative Flow+ (CF+) [24] is a recently intro-
duced dataset with artistic-like scenes and ground
truth optical flow. Tests are done on the 10K sam-
ple list provided by the authors. Some of the experi-
ments also use the set of 153K mixamo train frames.
Full resolution images (1500× 1500) are used. Note
that it is more meaningful to observe performance on
the foreground areas since optical flow on the back-
ground is often not well defined.

4.2. Supervised training distant domain perfor-
mance

First, to establish an overview of how supervised
models perform on a distant domain, their perfor-
mance is tested on CF+, similarly to [24]. The
two pre-trained PWC-Net models made available by
authors [28] are evaluated. One was trained on
FlyingChairs (C) [7] and FlyingThings3D (T) [18]
datasets, the second was fine-tuned for the Sintel [4]
dataset. The experiments are denoted as Sup: (C,T)
and Sup: (C,T,S).

4.3. Unsupervised training distant domain perfor-
mance

Next, we make a similar overview for the unsu-
pervised training and its distant domain transfer abil-
ity. Two unsupervised models are trained, one with
per-channel brightness constancy constraint, another
with census transform data term. We name the mod-
els Unsup [brightness]: (C,K+S) and Unsup [Cen-
sus]: (C,K+S) respectively.

Tests with different parameter settings and train-
ing protocols resulted in the following training pro-
cedure. To initialize the models, a pre-training phase
consisting of 240K iterations on FlyingChairs dataset
[12] is performed with unsup. loss Lun, regulariza-
tion λS = 3.0, no forward-backward consistency
(λC = 0) and fD as a brightness or difference.
Learning rate starts with 1e − 4 and is halved ev-
ery 100K iterations. Input image size is 512 × 384.
Fine-tuning is done on all KITTI and Sintel samples
with the same setting, apart from activated consis-
tency term λC = 0.3 and fD as brightness or census
difference respectively. With the brightness differ-
ence, convergence is reached after 455K iterations,
746K iterations are needed for the census difference.
Images are cropped to 896× 320.



4.4. Semi-supervision on single domain

The previous overview shows that unsupervised
models have a better distant domain transfer ability,
but suffer from low accuracy on the original domain.
We therefore attempt to introduce the transfer abil-
ity of unsupervised methods to a well-performing su-
pervised model using the proposed semi-supervision
method.

The PWC-Net model trained (supervised) for Sin-
tel dataset by the authors [28] is fine-tuned using the
constrained semi-supervision method taking super-
vised samples from Sintel and unsupervised samples
from Sintel movie dataset. We refer to this experi-
ment as Semi: (S→Sm).

In order to establish a control experiment, we also
continue training with supervised loss only (labeled
as Sup: (C,T,S) - modif. supervision).

In the experiments we tested multiple hyper-
parameter settings and ended with the following one:
One supervised and six unsupervised samples are fed
to the method at each iteration. We set λM = 0.1,
fD as per-channel brightness constancy constraint.
Frames are cropped to 768 × 384. To warm-up the
optimization, first three epochs are performed just
with supervised loss and are followed by 2 semi-
supervised epochs with small learning rate 1e-7. Af-
terwards, we perform 133K iterations with learning
rate 1e-5 that is halved after 30K, 50K, 70K, 90K,
105K and 120K iterations.

4.5. Semi-supervision including distant domain

Next, the idea of the previous experiment is devel-
oped further by taking unlabeled samples from the
distant domain.

The network is trained in the same way as in the
previous experiment with the only difference that the
unsupervised samples are taken from the training part
of the CF+ dataset (i.e., frames only, no GT flow).
We name the experiment as Semi: (S→CF).

4.6. Unconstrained semi-supervision

To test the need for the constrained semi-
supervision method, an experiment without any con-
straining takes place. The loss is simply defined as a
combination of supervised and unsupervised terms

Lcomb = Lsup + λULun (10)

as e.g. in [31].
We refer to this experiment as Uncons. semi: (S).

Again, the experiment starts with the Sintel fine-

tuned network as in previous sections. The network
is trained with Lcomb as a loss function on the Sin-
tel dataset with λS = 3.0, λC = 0.3 and fD as a
brightness constancy constraint.

We test three settings of the unsupervised loss
weight λU = 0.1, 1 and 2. In all three cases, a CF+
test error drop occurs in the first 30K iterations, how-
ever, it is followed by a rise even above the control
(Sup: (C,T,S) - modif. supervision) experiment. At
the same time, with all three λU settings, both terms
of the loss Lsup and Lun are decreasing during train-
ing. This suggests that Lcomb leads to an over-fitting
on Sintel in unsupervised objective.

In the final results table, we state the situation be-
fore the error rise for λU = 0.1 and 1.

4.7. Supervised training

To establish a supervised comparison, we also
fine-tune the PWC-Net model for the CF+ dataset in
a supervised manner. We refer to the experiment as
Sup: (C,T,S,S+CF).

In each training epoch, we train on all Sintel train-
ing samples and the same number of randomly cho-
sen CF+ samples. We train for 171K iterations start-
ing with learning rate 1e-5 that is gradually halved.

4.8. Common technical details

This subsection describes the common technical
details of the training.

In all experiments, Adam optimizer is used with
default β1 = 0.9, β2 = 0.999. Batch size is four
with the exception of semi-supervised experiments.
As in the original PWC-Net paper [28], the pyramid
weights are α1 = 0.005, α2 = 0.01, α3 = 0.02,
α4 = 0.08, α5 = 0.32.

Census photometric difference is computed on dif-
ferent window sizes at each pyramid scale, from the
largest to the smallest scale it is: 7 × 7, 7 × 7, 5 ×
5, 3× 3, 3× 3.

For data augmentation, both common and relative
(between frames in a pair) geometric transforms are
used: random rotation, translation, scale, squeeze,
flip, and crop. Photometric transforms are also in-
cluded: random gamma, brightness, contrast, and
relative color channel brightness changes.

Error measures. EPE refers to an average end-
point error

1∑
P∈S |A(P )|

∑
P∈S

∑
x∈A(P )

∥∥fP1→2(x)− fPGT,1→2(x)
∥∥
2
,

(11)



CF+ AEPE [px] Sintel AEPE KITTI 2015
median [px] [%]

Method ALL ALL FG Clean Final Fl-all
Horn-Schunck [9] 8.34 3.49 12.17 8.73∗ 9.61∗ −
Classic+NLfast [25] 13.35 7.05 9.27 9.12∗ 10.08∗ −
Brox2011 [3] 9.05 3.27 8.28 7.56∗ 9.11∗ −
Sup: (C,T) [28] 66.97 41.88 22.77 2.44 3.82 34.3
Sup: (C,T,S) [28] 74.23 33.54 18.21 1.78 2.41 10.6
Sup: (C,T,S) - modif. supervision 30.44 14.73 11.30 1.69 2.22 14.7

Unsup [brightness]: (C,K+S) 10.60 4.80 7.99 5.23 6.18 40.2
Unsup [Census]: (C,K+S) 15.06 9.05 8.65 4.22 5.19 25.1

Uncons. semi: (S) λU = 0.1 25.76 15.19 10.63 1.79 2.19 12.2
Uncons. semi: (S) λU = 1 24.91 15.32 9.95 2.54 3.10 22.0
Semi: (S→Sm) 17.36 8.41 8.91 1.81 2.49 16.9
Semi: (S→CF) 7.88 3.79 6.65 1.79 2.25 18.9

Sup: (C,T,S,S+CF) 8.19 3.54 5.62 1.81 2.24 17.4

Table 1: Main results table. All numbers except columns marked median and Fl-all, are mean endpoint errors over all test samples.
Fl-all denotes outlier ratio (>3px and >5% EPE), median is computed across individual sample average EPEs. Dataset abbreviations: C:
Flying Chairs [12], T: FlyingThings3D [18], S: Sintel [4], Sm: Sintel movie, CF: Creative Flow+[24], K: KITTI unlabeled multiview
extension [8, 18]. For classical methods, we list the results from [24]. Results marked with a star (*) come from the official test
benchmark.

Creative Flow+ AEPE [px]
median Style, FG Speeds, FG

ALL ALL FG flat toon tex stylit <1% 1-3% >3%
Sup: (C,T) [28] 66.97 41.88 22.77 41.18 10.86 16.09 23.67 23.17 17.84 32.73
Sup: (C,T,S) [28] 74.23 33.54 18.21 24.71 7.03 17.46 21.77 17.50 15.18 30.94
Sup: (C,T,S) - modif. supervision 30.44 14.73 11.30 7.79 6.42 13.62 14.76 8.48 12.36 28.22

Unsup [brightness]: (C,K+S) 10.60 4.80 7.99 7.67 5.90 9.01 8.85 4.90 9.54 25.51
Unsup [Census]: (C,K+S) 15.06 9.05 8.65 7.83 5.93 9.94 9.99 5.47 9.81 27.79

Uncons. semi: (S) λU = 0.1 25.76 15.19 10.63 11.14 5.99 12.35 12.19 8.26 10.99 26.19
Uncons. semi: (S) λU = 1 24.91 15.32 9.95 11.24 5.72 11.75 10.86 7.76 10.24 24.5
Semi: (S→Sm) 17.36 8.41 8.91 7.20 5.66 10.66 10.79 5.95 10.18 26.23
Semi: (S→CF) 7.88 3.79 6.65 6.85 5.32 8.94 6.19 3.47 8.68 23.58

Sup: (C,T,S,S+CF) 8.19 3.54 5.62 5.84 4.61 9.10 4.36 2.94 7.21 20.20

Table 2: Detailed results of the presented methods on CF+. We list the same metrics as in the original paper [24]. All numbers
except column marked median, are average endpoint errors. Median is computed across individual sample average EPEs. Performance
is broken down into All (full frame) and FG (foreground) as well as by style and speed (<1% ground-truth optical flow length less than
1% of the frame size i.e. 15 px, 1-3% between 15 and 45 px, >3% over 45 px).

where S is a set of test samples, A(P ) defines the
area of interest (whole image, foreground pixels etc.)
and fP1→2 is the flow estimated on sample P scaled to
original image size.

Fl-all is an error measure proposed for the
KITTI’15 dataset, where there is an uncertainty in
optical flow measurements. It is defined as the per-
centage of optical flow outliers i.e., flow end-point
error is > 3px and > 5% of GT flow.

5. Results and discussion

This section discusses the results of the experi-
ments described in the previous section. The results
of the experiments are listed in Table 1, qualitative
assessment is presented in Figure 2. Extended eval-

uation on the Creative Flow+ dataset is shown in Ta-
ble 2.

Supervised training. First, we observe that the
supervised methods fail on the CF+ dataset, see
Sup: (C,T) and Sup: (C,T,S) in Table 1. Figure 2
indicates abruptly outlying estimates on constant in-
tensity regions. Problems also occur on object tex-
ture changes. We get slightly different results to [24],
possibly due to a different framework, however, the
conclusion is the same.

Unsupervised training. With unsupervised train-
ing, the models do not suffer from the distant
domain transfer issues - the performance on the
CF+ dataset is significantly better, as shown in Ta-
ble 1, Unsup [brightness]: (C,K+S) and Unsup [Cen-



I1 I2 ∆I21 Flow GT Sup: (C,T,S)
Unsup

brightness:
(C,K+S)

Semi:
(S→Sm)

Semi:
(S→CF)

Sup:
(C,T,S,S+CF)

Figure 2: Qualitative assessment. Input images (first two columns) with a color coded difference visualization (third column); the
ground truth flow and flow estimates for selected methods (following columns).

sus]: (C,K+S). Figure 2 shows that the estimated
flow field is smoother, with no abrupt outliers. How-
ever, the test errors on Sintel and KITTI dataset stay
far behind the supervised models.

We hypothesize that although the unsupervised
objective is unable to properly handle the effects of
occlusions, motion blur, local ambiguities, etc., yet,
it is more universal than training for a supervised ob-
jective on a single domain. Therefore, we expect it
to perform better on a distant domain.

Semi-supervision on single domain. Semi-
supervision attempts to combine the observed dis-
tant domain transfer ability of unsupervised models
with the accuracy of supervised models on Sintel and
KITTI.

Table 1, Semi: (S→Sm), shows that constrained
semi-supervision training significantly drops the test
error on CF+ while the error on Sintel changes just
slightly. Curiously, this is done without introducing
any CF+ samples.

We attribute the increased CF+ accuracy partially
to our way of supervised training, which seems to

decrease the error on CF+ as shown by our control
experiment Sup: (C,T,S) - modif. supervision. It is
most likely caused by differences in augmentations,
probably skipping additive white noise in our setting.

However, semi-supervision leads to a significant
decrease, suggesting that adding the unsupervised
loss with the proposed method makes the model per-
form closer to unsupervised methods on a distant do-
main with only minor changes on the Sintel domain.

Semi-supervision including distant domain.
When the semi-supervised model is explicitly pre-
sented with the samples from CF+, the error on this
distant domain drops significantly to the level of the
unsupervised methods (Table 1 - Semi: (S→CF)).
Note that the error is also significantly below the
semi-supervision on a single domain. Again, the er-
ror on Sintel stays virtually the same.

We hypothesize that since the images from the
other domain are presented, the network starts to
recognize it and optimize the unsupervised criterion
specifically on these samples. However, the super-



vised constraint prevented to apply the same criterion
on the supervised samples.

Unconstrained semi-supervision. Uncon-
strained semi-supervision tested the need for the
proposed constrained semi-supervision method
by formulating the training as a simple linear
combination of supervised and unsupervised losses.

As Table 1 Uncons. semi: (S) shows, the perfor-
mance on CF+ is similar for both λU settings, es-
pecially on the foreground regions. On Sintel and
KITTI, low λU = 0.1 preserves the accuracy of the
initial model; however, a significant error rise is ob-
served with higher λU = 1.

The observations correspond to the expectations
- with small unsupervised term weight, the training
is not able to introduce the unsupervised objective to
the model. When we attempt to promote it more with
higher λU , the accuracy on the supervised domain is
lost.

Supervised CF training. Supervised training
on CF+ is able to improve the performance on the
dataset while maintaining the accuracy on Sintel
(see Table 1, Sup: (C,T,S,S+CF)). Evaluated on the
whole frames, it does not surpass constrained semi-
supervision. However, as it was already mentioned,
the background flow is often not well defined; thus,
this metric is not as relevant.

The performance margin to a constrained semi-
supervision on the foreground areas is not as large
as e.g., the margin between supervised and unsuper-
vised methods on Sintel, suggesting that CF+ fea-
tures complicated scenes that are hard to solve even
with supervision.

6. Conclusion

In this paper, we propose a semi-supervision
method by constraining the unsupervised update by
the supervised gradient.

The experiments show that the proposed con-
strained semi-supervision method leads to a better
performance in distant domain transfer while main-
taining the performance on the supervised (i.e., Sin-
tel) domain. Some improvement is already observed
when introducing the unsupervised objective only
on a single domain, even better results are achieved
when the unlabeled samples from the distant domain
are included. Our control experiment was not able to
prove that the same effect is achieved by an uncon-
strained formulation.

As it could be foreseen, supervised training on the
distant domain improves the results even further, but
the margin is not as significant as expected.
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