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Abstract. Vehicle detection in aerial and satellite
images is still challenging due to their tiny appear-
ance in pixels compared to the overall size of remote
sensing imagery. Classical methods of object detec-
tion very often fail in this scenario due to violation
of implicit assumptions made such as rich texture,
small to moderate ratios between image size and ob-
Jject size. Satellite video is a very new modality which
introduces temporal consistency as inductive bias.
Approaches for vehicle detection in satellite video
use either background subtraction, frame differenc-
ing or subspace methods showing moderate perfor-
mance (0.26 - 0.82 Fy score). This work proposes
to apply recent work on deep learning for wide-area
motion imagery (WAMI) on satellite video. We show
in a first approach comparable results (0.84 F) on
Planet’s SkySat-1 LasVegas video with room for fur-
ther improvement.

1. Introduction

Object detection, i.e. the recognition and locali-
sation of objects, in visual data is a very important
and still unsolved problem. For example, the prob-
lem becomes challenging in aerial imaging and re-
mote sensing as the data and scenes differ signifi-
cantly from the case considered usually in computer
vision [6, 25]].

Such remote detection is important in surveil-
lance, as demanding applications let surveillance cur-
rently undergo a transition from near to mid dis-
tances (as with security cameras) to sceneries such as
whole cities, traffic networks, forests, and green bor-
ders. Beside coverage new, low orbit satellite con-
stellation will allow multiple daily revisits and con-
stantly falling costs per image. Such applications can
be found e.g. in urban planning, traffic monitoring,
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Figure 1. Results of the proposed method. Top, left:
video frame of the SkySat-1 LasVegas video showing a
city highway with multiple cars. Top, right: vehicle la-
belling provided by Zhang et al. 34} [33]. Bottom, left:
the method’s response (heat) map. Bottom, right: the final
segmentation result. The network detects all labelled cars
and even a bus or truck at the right image border.

driver behaviour analysis, and road verification for
assisting both scene understanding and land use clas-
sification. Civilian and military security is another
area to benefit with applications including military
reconnaissance, detection of abnormal or dangerous
behaviour, border protection, and surveillance of re-
stricted areas.

Although remotely acquired data shows great re-
duction of occlusion and perspective distortion due
to the overhead view, new difficulties arise. Typical
aerial and satellite images are very large in resolution
and data size. For example, wide-area motion im-
agery (WAMI) provides instead of a few megapixel
(MP) typical for security cameras up to 400 MP per
image frame and three image frames per second
(2.2TB/s for 16bit per px). Satellite video gives
today 4K RGB video with 30 frames per second
(759.3 MB/s). Satellite images capture large scener-
ies, usually dozens of square kilometers which in-
troduce instead of a few visually large objects, thou-



sands of tiny objects coming from hundreds of cat-
egories in a single image. At the same time these
objects reduce in pixel size by orders of magnitude
from 10*px to 10%px, to even 10px for satellite
video [34], depending on the camera’s ground sam-
ple distance (GSDﬂ

This severe magnification of scenery and reduc-
tion of object size to very tiny appearances have
consequences. Object detection becomes very am-
biguous and sensitive to noise and nuisances and
the search space dramatically increases and becomes
very sparse. Inferred labels of data usually capture
instead of the bounding box or contour sole posi-
tions, as the extent of objects is even for humans,
e.g. in WAMI or satellite video, unrecognizable. All
this leads to major difficulties if not inapplicability
of vanilla methods [17]. Manual labelling of data is
furthermore very tedious, for many cases impossible,
hence, research on object detection in satellite video
relies currently on background subtraction and frame
differencing [16, 28} 32| 18] 4. [3]].

Recent literature [22, 23} 35, 15, 31} 18, 27, 17 134,
131 2 29, 30] also suggests to apply deep learning
on aerial and satellite high resolution RGB single
images, however, the work shows moderate perfor-
mance for GSD larger than 15cm [23]]. All work is
also tested with rather narrow datasets of very dif-
ferent sceneries which makes the validity of the re-
sults questionable and the comparison of methods
difficult. It is therefore unclear, if deep learning on
high resolution images will further improve, given
the limitations of the data.

Another problem of still images is the impossi-
bility to capture the dynamic behaviour of vehicles
which is essential for many applications. For exam-
ple, vehicle heading and speed are important indica-
tors in traffic models. Although rapid retargeting for
multi-angular image sequences with Worldview-2 is
possible [21]], the time interval of around one minute
between consecutive images is too large for reason-
able analysis.

For these reasons the paper addresses the problem
of vehicle detection in satellite video. Such video
was introduced 1999 by DLR-TubSat, since 2013
Planet’s SkySat-1 delivers up to 120s, 30Hz, 2K
panchromatic video covering two areas of 1.1 km?
with up to 80cm GSD. China’s Jilin programme
launched 2015, now provides even 4 MP color video.

2GSD is the spatial distance of two adjacent pixels on the
image measured on the ground.

To the best of our knowledge this is the first work
on using neural networks and deep learning to di-
rectly regress positions of vehicles in satellite video.
Inspired by recent work on WAMI [17] this paper
proposes to exploit the temporal consistency in satel-
lite video by using a neural network and deep learn-
ing instead of using background subtraction or frame
differencing, by this improving over the state-of-the-
art in vehicle detection with satellite video. To over-
come shortage of labelled video, this work follows
in this context the novel idea of transfer learning by
recognising similarity of WAMI and satellite video
data.

To summarise, the contributions of this work are

e the confirmation of results in LalLonde et al. [[17]]
which shows clearly improvement in vehicle de-
tection (from 0.79 to 0.93 in F score) when us-
ing a spatiotemporal convolutional network,

e empirical results showing the applicability of
FoveaNet [17] to reduced resolution (0.91 F}
score for 40% of the original image resolution
and 0.79 F} score for 20%), yielding sizes of
up to 3.6 x 1.8 px for vehicles which simulates
satellite video and finally,

e a transfer learning approach that uses labelled
WAMI data to train a detector for satellite video
with 0.84 Fj score which is comparable to the
currently best (subspace) method E-LSD[33]]
with 0.83 F} score on the same data.

2. Related Work

Deep learning significantly improved previously
handcrafted methods of object recognition [[6]. Neu-
ral networks and back-propagation allow a learning
formalism, where features and inference are jointly
learnt from data in a neat end-to-end framework. Ob-
ject detection is designed either as direct regression
of bounding box image coordinates [24] or by using
the idea of object proposals as intermediate step [25]].

These developments triggered also work on deep
learning for object detection in remote sensing [22,
231, 135, 115, 1314 8L 27, 17, 134) [131 12, 29, 30]. Ap-
plying deep learning for remote sensing is challeng-
ing, as labels are very expensive for satellite data
and good augmentation, transfer learning or even un-
supervised methods circumventing this problem are
currently unknown [38} 20]]. Besides deep learning,
object detection in remote sensing can be categorised



according to the approach taken as well as the sen-
sor modality, i.e. satellite image, sequence of multi-
angular satellite images, satellite video, aerial image
and WAMI.

Applying a classifier on top of a sliding window
is one possible approach. Using a convolutional neu-
ral network in combination with hard negative min-
ing showed by a F; score of 0.7 reasonable results
with 15cm GSD on aerial images [15]. Following
the golden standard [25], adapted variants of the base
feature, region proposal and Fast R-CNN network
have been proposed such as using skip connections
in the base and focal loss [31], or using a dilated,
multi-scale VGG16 as base in combination with hard
negative mining [8] which gives AP and Recall larger
than 0.8 in their experiments. Guo et al. [27] intro-
duces proprietary base, region proposal and detection
networks, but did not show results on vehicles. This
approach is useful with aerial images, but fails en-
tirely for 1rh GSD video as shown by [34] (F} score
of 0.5). Results on high resolution satellite images
are still unknown in literature.

Another idea is to pixel-wise classify vehicle vs.
background (semantic segmentation), e.g. by com-
bining Inception and ResNet to give a heatmap. As-
suming a fixed vehicle size and using non-maxima
suppression gives excellent results [23] (F7 score
larger than 0.9). Imbert proposes a generative U-Net
in combination with hard negative mining for satel-
lite images but kept unfortunately results in absolute
F1 scores confidential.

Spatiotemporal information is a further cue impor-
tant in object detection, especially with WAMI and
satellite video. The standard is to use background
subtraction (BGS) [35, 16, 28, 132}, 1] and frame dif-
ferencing (FD) [18. 4} 3], except Al-Shakarji et al. [2]
who combined YOLO with spatiotemporal filtering
on WAMI (F; score of 0.7), and Mou and Zhu [22]]
who use KLT tracking on video with a SegNet on
overlapping multispectral data, however, they did not
show results for vehicles. Zhang and Xiang [35] ap-
ply a ResNet classifier trained on CIFAR on propos-
als from a mixture of Gaussians foreground model,
but did not show a proper evaluation.

The standard here is to apply connected compo-
nent analysis [16) [28]], saliency analysis, segmenta-
tion [32, [18]], distribution fitting [4, 3] followed by
morphology. F scores of larger than 0.9 for ships
and scores between 0.6 and 0.8 for vehicles on the
Burji Khalifa [32]], Valencia [4, 3] and Las Vegas [16]

videos suggest BGS, FD for larger objects. Both
BGS and FD depend heavily on registration and par-
allax correction, hence, these methods introduce var-
ious nuisances for vehicles which are difficult to han-
dle. Evaluation on single, selective scenes is further
too narrow to draw a final conclusion.

Very recent work [33] suggests a subspace ap-
proach for discriminating vehicles and background.
The idea shows potential with Fj score results of
larger than 0.8 on the simple Las Vegas video, which
therefore needs further evaluation with more com-
plex traffic patterns.

Another problem is the sparsity of vehicle occur-
rences in very large images as in WAMI which has
been tackled by clustering the large images to draw
attention to certain parts of the image and then to
apply convolutional neural networks on single im-
ages [29][30] or multiple video frames [17] for fi-
nal detection. Such clustering combined with deep
spatiotemporal analysis shows excellent results on
WAMI (F7 score larger than 0.9) [17].

Also very recently tracking of airplanes, trains and
vehicles has been considered for satellite video [10,
9,126, 12], either by using optical flow [10, 9], corre-
lation trackers (KLT) [26] or a combination of corre-
lation and Kalman filters [12].

3. Methodology

With our goal of detecting moving vehicles in
satellite videos, we were inspired by the work of
Lalonde et al. [17]], who designed two neural net-
works, denoted as ClusterNet and FoveaNet, to de-
tect vehicles in WAMI. The ClusterNet proposes re-
gions of objects (ROOBI) based on areas of interest
(AOI), which are input to the FoveaNet. Instead of
using the ClusterNet to determine ROOBIs we split
the AOI into square tiles (ROOBIs) with size N X V;
e.g. N=128px. The object detection based on the
FovealNet consists of two steps as depicted in Fig.

3.1. FoveaNet and thresholding

The FoveaNet is a fully convolutional neural net-
work (CNN) and consists of eight convolutional lay-
ers. The number of filters per convolution are 32, 32,
32, 256, 512, 256, 256 and 1. Their filter sizes are
summarized in Tab. 3l After the first convolution a
2x2 max pooling is carried out. Moreover, during
training the 6" and 7" convolutional layers have a
50% dropout. The heatmap is generated by the final
1x1 convolutional layer where each neuron gives a



FoveaNet

Heatmap

Thresholding

Prediction

Figure 2. The object detection process consists of two steps [17]]: The FoveaNet predicts a heatmap, which indicates the
likelihood that an object is at a given image coordinate. Vehicles are detected by thresholding the heatmap.

vote of the likelihood of a moving vehicle at pixel
level.

The input to the network is a stack of frames with
size N x N xc, where N x N is the ROOBI size and ¢
depicts the number of consecutive adjoining frames
in a stack. Hereinafter we refer to ¢ as channels.
Thereby, the CNN shall learn to predict the posi-
tions of the objects of the central frame. We believe
the FoveaNet is capable to learn spatiotemporal fea-
tures by feeding the network with stacks of multi-
ple frames (e.g. c¢=5), which are especially impor-
tant in lower resolution images as existing in satellite
videos.

The ground truth is based on heatmaps H, which
are created by superimposing Gaussian distributions,
where the center of each distribution is the pixel po-
sition (x,y) of the vehicle in the image:
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where n are the downsampled ground-truth coor-
dinates provided in pixel positions and o is the vari-
ance of the Gaussian blur. During training the net-
work learns to minimize the Euclidean distance be-
tween the network output and the generated ground
truth heatmaps.

The original FoveaNet uses ReLUs as activation
functions. We discovered, however, the problem
known as the “Dying ReLU” problenﬂ During train-
ing, a weight update triggered by a large gradient
flowing through a ReLU can make the neuron inac-
tive. If this happens, the gradient flowing through
this ReLLU will always be zero and the network con-
tinues to give the same output. In our trainings
we frequently discovered this phenomenon (~71%
of the cases) using the Xavier initialization [11].
Hence, we replaced the ReLUs with either ELUs
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(Exponential Linear Unit) or Leaky ReLUs.

The second step processes the predicted heatmap
to determine the objects’ positions. For this, the
heatmaps are converted into segmentation maps via
OTSU thresholding [17]. If the segmented area is
larger than a threshold «, then the center of the area
is defined as the object position.

3.2. Transfer learning

To the best of our knowledge there are cur-
rently no annotated datasets of satellite videos pub-
licly available. In contrast, there are some labeled
WAMI datasets accessible; e.g. the WPAFB dataset’
contains over 160.000 annotated moving vehicles.
WAMI and satellite images, however, differ consid-
erably, among other things due to the different GSD.
For instance, the WPAFB images have about four
times higher GSD than the LasVegas video. Our core
idea is to use transfer learning for a domain transfer
from WAMI to satellite images. For this, we train our
CNN based on the WPAFB dataset. Afterwards we
fine-tune the CNN on satellite video data.

4. Experimental Evaluation and Results

Our network was trained from scratch using Py-
Torch - we used Adam with a learning rate of le-
5 and a batch size of 32. Data preparation includes
frame registration to compensate camera motion.

We conducted three experiments. In the first ex-
periment we carry out a baseline evaluation to re-
produce the results of [[17]. For the second experi-
ment, we reduce the image resolution (GSD) of the
WPAFB dataset. Thereby, the vehicle size in these
low-resolution images is in the same order as in satel-
lite videos. In the third experiment, we carry out
a fine-tuning and evaluate the FoveaNet on satellite
data.

“https://www.sdms.afrl.af.mil/index.php?collection=wpafb2009,

11/03/2019



Figure 3. AOI 40 contains a lot of dense traffic passing the intersection. On the contrary, AOI 41 contains mostly single
vehicles driving on the road. Traffic patterns of AOI 34 are a combination of AOI 40 and AOI 41.

Detections are considered true positives if they are
within a certain distance 6 of a ground truth coor-
dinate. If multiple detections are within this radius,
the closest one is taken and the rest, if they do not
have any other ground truth coordinates within the
distance 6, are marked as false positives (FP). Any
detections that are not within 6 of a ground truth co-
ordinate are also marked as FP. Ground truth coordi-
nates which have no detections within 6 are marked
as false negatives. Quantitative results are compared
in terms of precision, recall, and I’ measure.

To compare our results with LaLonde et al. [17]
we selected three of their AOIs (area of interest) - 34,
40 and 41. The contents of the AOIs 40 and 41 with
respect to traffic patterns widely differ as displayed
in Fig. [3] Whereas AOI 40 contains a lot of dense
traffic at a main intersection, AOI 41 mainly consists
of single vehicles on the road. AOI 34 is a combi-
nation of both traffic patterns. Data was split into
training and testing in the following manner: AOI 34
was trained on AOIs 40 and 41. AOI 40 was trained
on AOIs 34 and 41 and AOI 41 was trained on 34
and 40. In contrast to [17], we omitted AOI 42 for
training as it is a sub-region of AOI 41.

For training and evaluation based on the WPAFB
dataset, only frames with moving vehicles were in-
cluded. We excluded frames without moving vehi-
cles as our approach focuses solely on the detection
and omits the region proposal part (ClusterNet) of
[17]. A vehicle is defined as moving if it moves at
least w pixel within 5 frames.

4.1. Experiment 1: Baseline evaluation

In the first experiment we reproduced the results
in [17]. For this, we set the following parame-
ters: N=100 px (ROOBI edge length), o=2 (variance
of Gaussian blur), #=40px (evaluation threshold),

w=15 px (threshold for removing stationary cars) and
a=15px (threshold to disregard small segments).
Tab. [I] indicates that our results are in the same or-
der of magnitude than [17]. For instance, we achieve
a I} score of 0.90 in AOI 34 (c=5), whereas Lalonde
et al. have a F score of 0.93. The difference in the
results is most likely due to the implementation dif-
ferences of the second step, where we i.a. do not split
connected regions into multiple detections. This pre-
sumption is confirmed looking at the evaluation re-
sults of AOI 40, where the differences of the F} score
are greatest. AOI 40 contains a lot of dense traffic at
the intersection resulting in connected regions, which
cause false negative detections (Fig. H). Further-
more, the results in Tab.[T|confirm that the network is
learning spatiotemporal features which improve the
overall performance comparing single versus multi-
channels. For instance, the precision of AOI 34 in-
creases from 0.73 (c=1) to 0.87 (¢=5).

Figure 4. The detection of vehicles in crowded scenes
is error-prone. Detection results of a ROOBI with re-
duced resolution (SF=0.2): (a) ground truth, (b) pre-
dicted heatmap, (c) after thresholding, (d) detected vehi-
cles (green: true positives, pink: false negatives)



Table 1. Results are based Experiment 1 Experiment 2
on three AOIs of the Full Resolution Scaling factor 0.4 Scaling factor 0.2
WPAFB  dataset ~ with | AOI | ¢ || Prec. | Rec. | Fy | F; | Prec. | Rec. | Fy | Prec. | Rec. | F}
various  channel  sizes [ 34 | 1| 0.73 | 0.88 | 0.79 055 | 055 | 055 | 039 | 0.35 | 0.37
(c). For comparison, Fi* [~40 | 1 | 0.73 | 0.82 | 0.77 0.55 | 0.48 | 0.51 | 0.20 | 0.21 | 0.20
scores of [[17] are provided. [41 |1 | 0.76 | 0.90 | 0.82 0.60 | 0.72 [ 0.65 | 0.28 | 0.42 | 0.34
Results of the second 34 [ 3] 086 | 0.94 | 0.90 093 [ 0.77 | 0.84 | 0.80 | 0.61 | 0.69
experiment include two 40" [3 [ 0.92 | 0.89 | 0.90 095 | 0.69 | 0.80 | 0.93 | 0.56 | 0.70
scaling factors - 0.4 and ™47 377093 | 0.93 | 0.93 097 | 0.84 | 0.90 | 0.89 | 0.69 | 0.77
0.2. 34 [ 5] 087 | 093]090]| 093 094 | 0.78 | 0.85 | 0.91 | 0.63 | 0.74
40 [ 5] 092 | 089 090|098 | 096 | 0.70 | 0.81 | 0.90 | 0.57 | 0.70
41 |5 093 092093093 097 | 0.85 | 0.91 | 0.90 | 0.70 | 0.79

4.2. Experiment 2: Downscaled WPAFB dataset

For the second experiment we reduced the im-
ages by a scaling factor (SF) of 0.4 and 0.2 result-
ing in 40% and 20% of the original image resolu-
tion, respectively. We selected a SF of 0.2, because
this factor reduces the typical vehicle object size in
the WPAFB dataset from the order of 18x9px to
3.6x 1.8 px, which is like the vehicle size in satellite
videos. The following parameters were set for the
experiments: SF=0.4 with N=100 px, 0=2, 0=16px,
w=6 px, a=15px and SF=0.2 with N=100 px, o=1,
0=8 px, w=3 px, a=3.5 px. Comparing results of de-
tections based on c=1 (Tab. [I) indicate that the per-
formance significantly decreases with lower image
resolutions; e.g. the Fj score of AOI 40 decreases
from 0.77 to 0.20 (SF=0.2). In contrast, the detection
results significantly improve if the number of chan-
nels is increased. These results confirm our hypoth-
esis that the learned spatiotemporal features are of
great importance for detecting tiny objects such as
vehicles under low resolution.

One of the main problems with low resolution im-
ages is the small distance between neighboring vehi-

Figure 5. Example of the SkySat-1 LasVegas video in
which both AOIs are shown. AOI 1 (400x400 px) is used
for evaluation and AOI 2 (600x400 px) for training. Two
ROOBIs are sketched as yellow dashed rectangles.

cles as displayed in Fig. [} In this case the FoveaNet
creates a heatmap with a large number of connected
regions, which result in a large number of false nega-
tive detections. To deal with small distances between
neighboring cars we reduced the variance o of Eq.
[I} which improved the detection results. Otherwise,
this issue has not been addressed in this work, al-
though enhancing step 2 of the object detection will
most likely improve the results.

4.3. Experiment 3: Satellite video

The third experiment is conducted to evaluate
the detection performance of the FoveaNet on the
panchromatic satellite SkySat-1 LasVegas Videdﬂ
consisting of 700 frames, whose GSD is ~1.0 m and
its frame rate is 30 fps. We defined two AOIs as il-
lustrated in Fig.[5] While AOI 2 is mainly composed
of straight parallel roads, AOI 1 contains addition-
ally a bridge which results in more complex traffic
patterns. The ground truth which was kindly shared
by [33]] consists of bounding boxes for moving ve-
hicles. We used the center points of those bound-
ing boxes as ground truth analogous to the WPAFB
ground truth.

For training and evaluation we set =8 px, a=4 px,
o=1, ¢=5 and N=128px. Additionally, we set
SF=0.2 and w=3 px for training the WPAFB dataset.
We observed in this experiment higher efficiency in
training by replacing the ELUs with Leaky ReL.Us.

Tab. 2] shows the results of nine individual experi-
ments using FoveaNet with different filter sizes in the
respective convolutional layers (Tab. [3). FoveaNet is
trained on the 80 % reduced WPAFB and directly ap-
plied to the LasVegas video. We observe high recall
(>0.8) but average precision which proves applica-
bility of transfer learning.

Shttps://www.youtube.com/watch?v=IKNAY SELUZY



In contrast to LalLonde et al. [[17], we do not ob-
serve large influence of the filter size to the final per-
formance of the network. The argument that large
filter sizes in the first layer are needed for spatial con-
textual information seems to be misleading, as con-
text is introduced in higher layers of a deep network
by the network’s receptive field. We argue that the
filter size depends on the pixel distance of vehicles
in consecutive frames so that the spatiotemporal net-
work can exploit temporal information which is em-
pirically confirmed by our experiments.

We then choose slightly smaller filter sizes
(13-11-9-7-5-3-3-1) for the convolutional layers in
FoveaNet, as this configuration shows best final re-
sults. We fine-tuned the network on AOI 2 which
improved Fj score from 0.55 to 0.84. A qualita-
tive result of this experiment is shown in Fig. [I]
The heat map of the network reconstructs amazingly
well the ground truth. It detects not only cars but
also buses and trucks which the network never saw
before. Three experiments with varying filter sizes
show further that filter sizes have minor influence on
the result. We clearly see that our proposed method
outperforms most methods for vehicle detection in
satellite video except E-LSD[33]] which is compara-
ble to our results.

We then performed an experiment where we di-
rectly trained all layers of FoveaNet on AOI 2. Sur-
prisingly, the overall results are only slightly worse
which indicates that the learning problem is not as
complex as for the WPAFB dataset. We conclude
from all observations that FoveaNet learns to de-
tect moving spots by characterising the slope of lin-
ear movement in spacetime which is a much simpler
learning problem as learning spatiotemporal changes
of visual appearance. However, pre-training on
WPAFB is important for the network to generalise
as can be seen in Fig. [ Without pre-training the
network is in this example not able to detect more
complex motion patterns such as the moving vehicle
on the bridge. It is an open question if such patterns
could be learned by sole data augmentation.

Finally, we performed an experiment where we
studied the effect of the frame rate of videos. Be-
side our baseline of considering every 10th image
frame of the satellite video, we experimented with
every 5th, 15th and 30th (1 fps) video frame. The re-
sults indicate less influence of higher frame rates on
performance. This again supports our hypothesis that
very simple features such as typical slopes of vehicle

ol (l

Figure 6. From left to right. Top: input image and ground
truth. Middle: estimated and thresholded heatmap,
FoveaNet trained with AOI 2. Bottom: estimated and
thresholded heatmap, FoveaNet after fine-tuning.

trajectories in spacetime are learned by the network.
This presumption needs however further experiments
and insight.

5. Conclusion

This paper considers vehicle detection in satel-
lite video. Vehicle detection in remote sensing is
challenging as the objects usually appear tiny com-
pared to the size of typical aerial and satellite im-
ages and discrimination of objects of interest from
background is frequently ambiguous. Satellite video
is a very new modality introduced 2013 by Skybox
(now Planet) which might overcome the problem by
introducing high temporal resolution. This allows to
exploit temporal consistency of moving vehicles as
inductive bias. Current state-of-the-art methods use
either background subtraction, frame differencing or
subspace learning in video, however, performance is
currently limited (0.26 - 0.82 F} score).

The method in this paper is motivated by recent
work in WAMI which exploits video in spatiotempo-
ral convolutional networks[17]. We apply FoveaNet
to the domain of satellite video by transfer learn-
ing the network with WPAFB and a small amount
of available labelled video frames of the SkySat-
1 LasVegas video which yields comparable results
(0.84 Fy score). Several ablation studies show mi-
nor influence of the filter sizes in the convolutional
layers and minor influence of the frame rate (tempo-



WPAFB LasVegas AOI 1 SOTA
Conf. | Prec. | Rec. | F; Prec. | Rec. | F; Prec. | Rec. | F;
1 0.56 | 0.67 | 0.61 || scratch | 0.87 | 0.80 | 0.83 ViBe[5] | 0.58 | 0.17 | 0.26
2 0.46 | 0.76 | 0.57 fine-tuning GMMvV2[39] | 0.65 | 0.27 | 0.38
3 0.40 | 0.79 | 0.53 1 0.84 | 0.82 | 0.83 GMM[14] | 046 | 0.50 | 0.48
4 0.42 | 0.81 | 0.55 4 0.86 | 0.82 | 0.84 || Fast-RCNN-LRP[34] | 0.58 | 0.44 | 0.50
5 043 | 0.85 | 0.58 9 0.76 | 0.85 | 0.80 GoDec[36] | 095 | 0.36 | 0.52
6 0.47 | 0.80 | 0.60 skip 5 0.84 | 0.83 | 0.84 RPCA-PCP[7] | 0.94 | 0.41 | 0.57
7 0.46 | 0.82 | 0.59 || skip10 | 0.86 | 0.82 | 0.84 Decolor[37] | 0.77 | 0.59 | 0.67
8 046 | 0.83 | 0.59 || skip15 | 0.85 | 0.81 | 0.83 LSD[19] | 0.87 | 0.71 | 0.78
9 0.45 | 0.70 | 0.55 || skip30 | 0.83 | 0.82 | 0.83 E-LSD[33] | 0.85 | 0.79 | 0.82

Table 2. Left: Evaluation results of nine different filter size configurations (see Tab. [3) of the FoveaNet. Middle: Results
of the FoveaNet trained from scratch, fine-tuned with different filter sizes and different fps (conf. 4). Right: Evaluation

results of state-of-the-art (SOTA) methods are presented.

conf. | filter size conf. | filter size
1 19-17-15-13-11-9-7-1 6 9-7-5-3-3-3-3-1
2 17-15-13-11-9-7-5-1 7 7-5-3-3-3-3-3-1
3 15-13-11-9-7-5-3-1 8 5-3-3-3-3-3-3-1
4 13-11-9-7-5-3-3-1 9 3-3-3-3-3-3-3-1
5 11-9-7-5-3-3-3-1

Table 3. Filter size configurations of the various experi-
ments. Conf. 3 corresponds to the filter sizes suggested
by Lal.onde et al. [[17].

ral resolution) on the overall result. This indicates a
much simpler learning problem than for the original
high-resolution WAMI data, however, we show that
temporal information is essential for a good detec-
tion performance. Improvements of FoveaNet, e.g.
including the final segmentation of the heat map into
the network, are left for future work.
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