Adding discriminative power to hierarchical
compositional models for object class detection
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1 Standard vs. hierarchical object detection Library of parts in [Hop 2 Issues with generative hierarchies

- Layered hierarchy of parts (IHop) [1]
- Fast inference, good scaling and low storage.
- Due to significant sharing of parts acrosss categories.
* Problem: difficult to discriminate between visually-similar categories.
* Proposed solution: identify the subset of parts that differentiate pairs of
categories and combine them into discriminative nodes.
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- Standard object category detection =
sliding windows or oversegmentations + high-dimensional descriptors + SVM.
- Problems: slow inference time, large storage requirement, poor scaling.
- Hierarchical compositional models (e.g., [1,2,3,4]) can avoid these drawbacks.
- Hierarchical: organize the representations by level of granularity.
- Compositional: each part is a composition of parts from a lower layer.
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2 Which parts are active at detection? 4.Training / detection 5. Experimental results (cont.)
» Detection of a horse (left) and of a cow (right) by IHop [1]: Training stage: Experiment 2:

 Goal: Demonstrate the improvements in hypotheses rescoring.
- ETHZ shape dataset (Ferrari et al., 2010):

For all train images...
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Detection on all train images...

| Category N

 The frequency/strength of the activated parts can be sumarized

by a cumulative histogram of part responses: - Half images of category for training and the other half + all images

The library of parts Cumulative histogram The library of parts Cumulative histogram ;{i}l'::",-l » 3b Label rjita:rg‘les Of rema.lnlng Categorles for teStlng, (5 random SpIItS).
part, oart, y ground truth. » Evaluation: Detection rate at 1FP per image at 50% overlap
o t o 2 . . .
g part. 5 ot » IHop trained with 7 layers (~525 parts per experiment).
: Detection stage: Results of hypothesis rescoring. N denotes the number of selected library parts.
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= - Goal: Analyze discrimination between two visually similar Example of selected discriminative parts along with the distribution of
; _ categories and the background. frequently chosen parts over several repetitions of the experiment.
. J . J  Dataset composed of Weizman Horses (Borenstein&UIlIman, 2008)
and Leeds Cows (Leibe et al., 2008): - Parts were selected from different layers for each category.

* Most parts selected from layers 3-5.

o - Emphasizing more global distinctive f res for rization.
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J © ... weight vector 6. Conclusion and future work
% @ Classification function:
O f(h; @) — hie * Proposed a simple way to identify discriminative parts in a

generative hierarchy.
- Detection improved by discriminative rescoring.
- The approach does not hamper the IHop’s advantages
(sharing, storage, scaling).
* Current approach takes into account only frequency of parts.
* Future work will explicitly take into account the positions as well.

- Split: 75 images for training, 263 for testing.
* [Hop with 7 layers with [6, 33, 161, 180, 93, 104, 2] vocabulary parts.

» Sparsity of vector © results in selection of discriminative parts:

Non-sparse: >parse: « PASCAL criterion at overlap >0.3 with ground truth (GT):
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