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1 Standard vs. hierarchical object detection 2 Issues with generative hierarchies

• Standard object category detection = 
  sliding windows or oversegmentations + high-dimensional descriptors + SVM.
• Problems: slow inference time, large storage requirement, poor scaling.
• Hierarchical compositional models (e.g., [1,2,3,4]) can avoid these drawbacks.
 • Hierarchical: organize the representations by level of granularity.
 • Compositional: each part is a composition of parts from a lower layer.

• We cast identification of discriminative parts and formation of 
  discriminative nodes as a problem of finding a sparse linear 
  separation between the cumulative histograms of parts responses.

Training stage:

Detection stage:

Two experiments designed to evaluate improvement of the 
proposed discriminative lHop (dlHop) over the baseline lHop [1].

Experiment 1:
• Goal: Analyze discrimination between two visually similar
  categories and the background.
• Dataset composed of Weizman Horses (Borenstein&Ullman, 2008)
  and Leeds Cows (Leibe et al., 2008):

• Split: 75 images for training, 263 for testing.
• lHop with 7 layers with [6, 33, 161, 180, 93, 104, 2] vocabulary parts.
• PASCAL criterion at overlap >0.3 with ground truth (GT):
  False positives per experiment and average precision (AP)
• Confusion matrix:
  Classify by the strongest detection 
  (after nonmax suppression) that 
  overlaps >0.3 by GT.

• dlHop significantly reduces confusion of cows and horses.
• On average, 8% of all parts were selected for discrimination.

Experiment 2:
• Goal: Demonstrate the improvements in hypotheses rescoring.
• ETHZ shape dataset (Ferrari et al., 2010):

• Half images of category for training and the other half + all images 
  of remaining categories for testing, (5 random splits).
• Evaluation: Detection rate at 1FP per image at 50% overlap
• lHop trained with 7 layers (~525 parts per experiment).

• dlHop consistently outperforms lHop.
• On average, dlHop outperforms, or exhibits performance
  comparable to, the competing methods.

• Parts were selected from different layers for each category.
• Most parts selected from layers 3-5.
• Emphasizing more global distinctive features for categorization.

• Sparsity of vector      results in selection of discriminative parts:      

• Learn the posterior over scores             by logistic regression:

• Sparse       is computed via a variational approach from [9].       

• Proposed a simple way to identify discriminative parts in a
  generative hierarchy.
• Detection improved by discriminative rescoring.
• The approach does not hamper the lHop‘s advantages 
  (sharing, storage, scaling).
• Current approach takes into account only frequency of parts.
• Future work will explicitly take into account the positions as well.
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• Layered hierarchy of parts (lHop) [1]
 • Fast inference, good scaling and low storage.
 • Due to significant sharing of parts acrosss categories.
• Problem: difficult to discriminate between visually-similar categories.
• Proposed solution: identify the subset of parts that differentiate pairs of 
                                    categories and combine them into discriminative nodes.
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3 Adding discriminative power

Non-sparse: Sparse:
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4. Nonmaxima
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Detection on all train images...

For all train images...

•  Detection of a horse (left) and of a cow (right) by lHop [1]:

 •  The frequency/strength of the activated parts can be sumarized 
    by a cumulative histogram of part responses:
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Hierarchically organized vocabulary
Two similarly likely hypotheses

score(cow)=0.75 score(cow)=0.9
score(horse)=0.25 score(horse)=0.1

score(cow)=0.2
score(horse)=0.8

Hypotheses likelihoods improved

score(cow)=0.8
score(horse)=0.2

Cow-specific part
Horse-specific part
Shared part

Descriptor:
HoG – like [Dalal&Triggs CVPR2015]
SIFT – like [Lowe IJCV 2004]
Color descr. [Khan et al. CVPR2012]
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Nonlinear SVM
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h ... cumulative histogram

    ... weight vector

Classification function:
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Responses for a horse (sketch) Responses for a cow (sketch)

Example of selected discriminative parts along with the distribution of
frequently chosen parts over several repetitions of the experiment.

Results of hypothesis rescoring. Ndisc denotes the number of selected library parts.
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