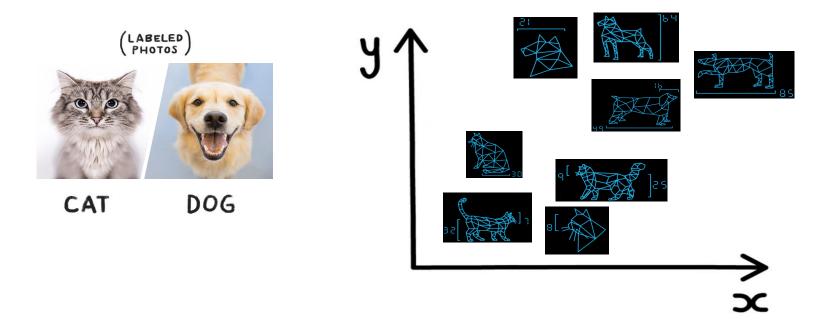
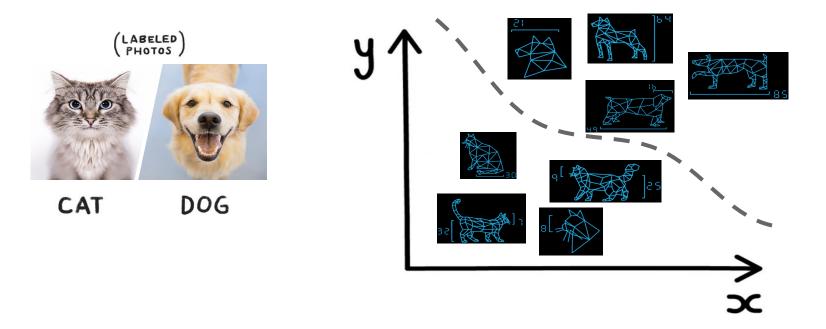


Learning to Generalize with Self-Supervision

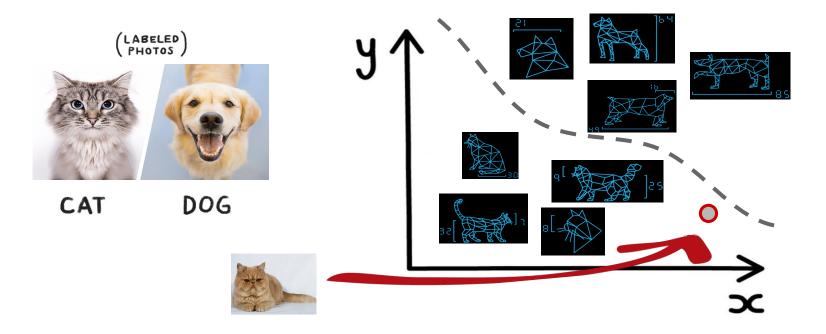

Tatiana Tommasi

Assistant Professor, Polytechnic University of Turin, Italy Affiliated Researcher, Italian Institute of Technology

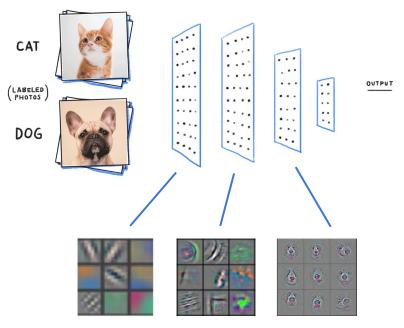
Computer Vision Winter Workshop February 3rd, 2020


Machine Learning

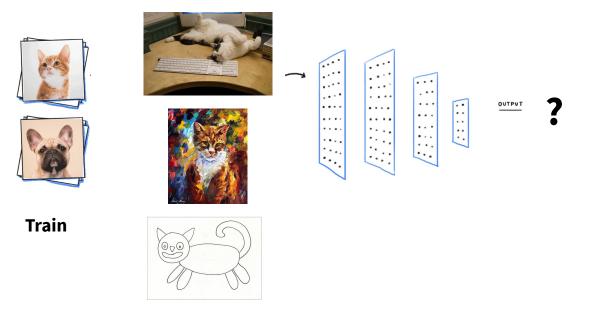
the study of algorithms that computer systems use to improve their **performance** a specific **task** relying on patterns and inference from **data (experience)**.


Machine Learning

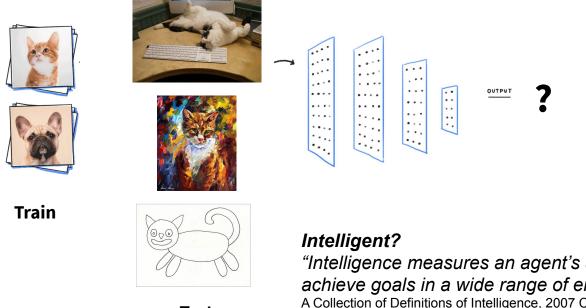
the study of algorithms that computer systems use to improve their **performance** a specific **task** relying on patterns and inference from **data (experience)**.


Machine Learning

the study of algorithms that computer systems use to improve their **performance** a specific **task** relying on patterns and inference from **data (experience)**.


the study of algorithms that computer systems use to improve their **performance** a specific **task** relying on patterns and inference from a lot of ... data (experience).

Filter Images from Zeiler & Fergus, 2013



the study of algorithms that computer systems use to improve their **performance** a specific **task** relying on patterns and inference from a lot of... data (experience).

the study of algorithms that computer systems use to improve their **performance** a specific **task** relying on patterns and inference from a lot of ... data (experience).

Test

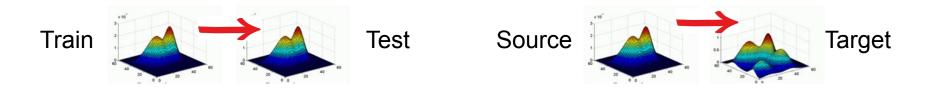
"Intelligence measures an agent's ability to adapt and achieve goals in a wide range of environments." A Collection of Definitions of Intelligence, 2007 Conference on Advances in Artificial General Intelligence (Wikipedia)

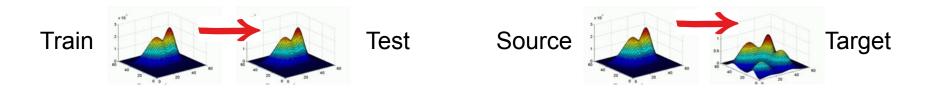
Appearance changes due to seasonal and time changes.

Slide Credit: M. Mancini, Domain Adaptation Tutorial, ICIAP 2019

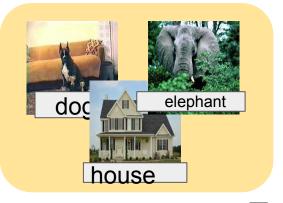
Appearance changes due to different sensors.

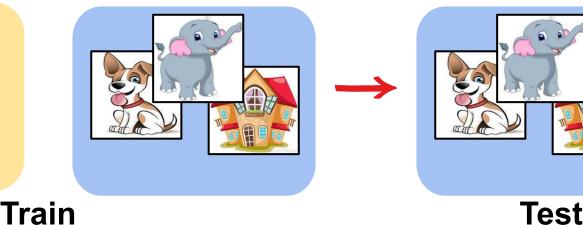
Use of synthetic data





Overcoming costly/unfeasible data collection

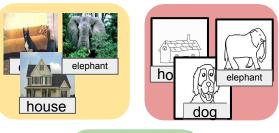




Unsupervised DA: transductive setting. T is available during training but is unlabeled

Labelled Source Domain

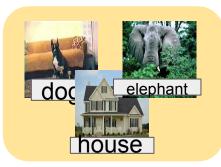
Unlabelled Target Domain

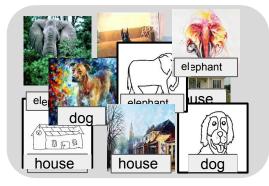


Number of Sources

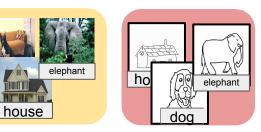
Single

Multi

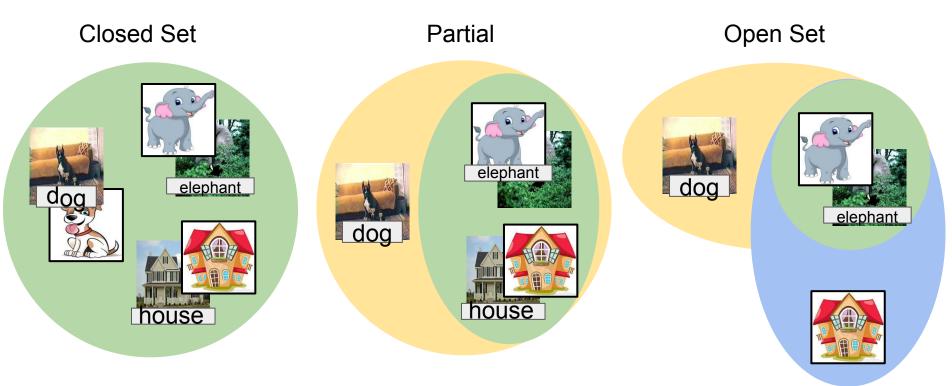



Slide Credit: M. Mancini, Domain Adaptation Tutorial, ICIAP 2019

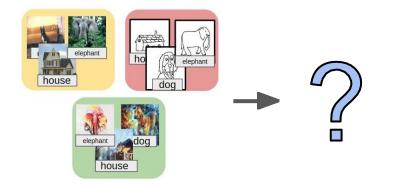
Number of Sources


Single

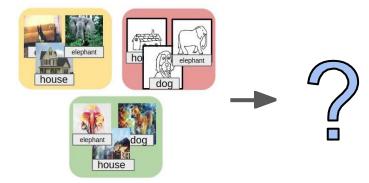
Mixed



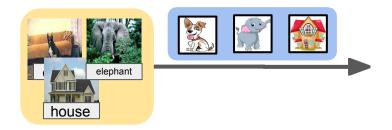
Multi



The Label Space


Without target data at training time

Domain Generalization

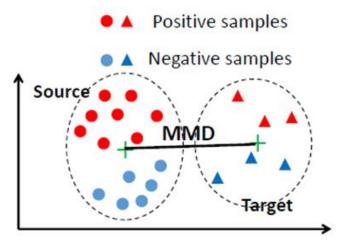


Without target data at training time

Domain Generalization

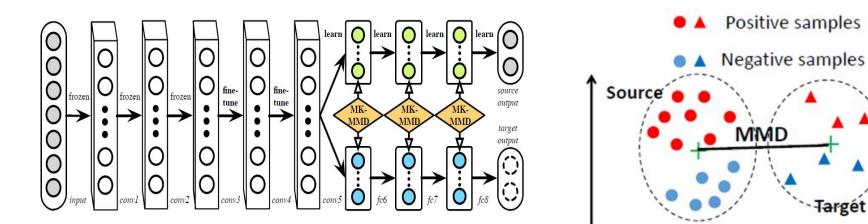
Continuous DA

Maximum Mean Discrepancy (MMD): Distance between embeddings of the probability distributions in a reproducing kernel Hilbert space.


 ${\mathcal H}\,$ Reproducing Kernel Hilbert space

 $h(x) = \langle h, \phi(x) \rangle_{\mathcal{H}}$

$$MMD^{2} = \left\| \frac{1}{n^{s}} \sum_{i=1}^{n^{s}} \phi(x_{i}^{s}) - \frac{1}{n^{t}} \sum_{i=1}^{n^{t}} \phi(x_{i}^{t}) \right\|^{2}$$

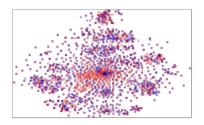

 $P^s(Y|X) = P^t(Y|X)$

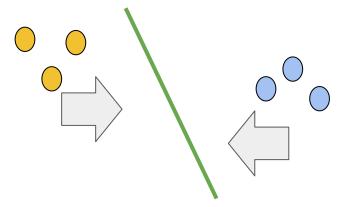
Covariate Shift Assumption

Gretton et al, NIPS 2007

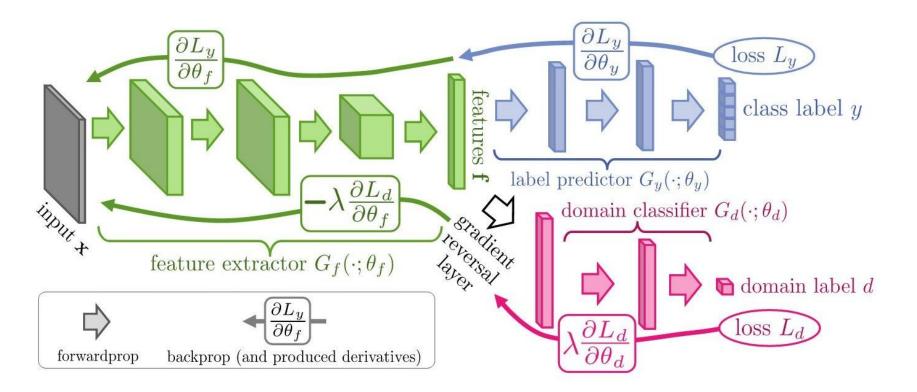
Maximum Mean Discrepancy (MMD): Distance between embeddings of the probability distributions in a reproducing kernel Hilbert space.

Long et al, ICML 2015

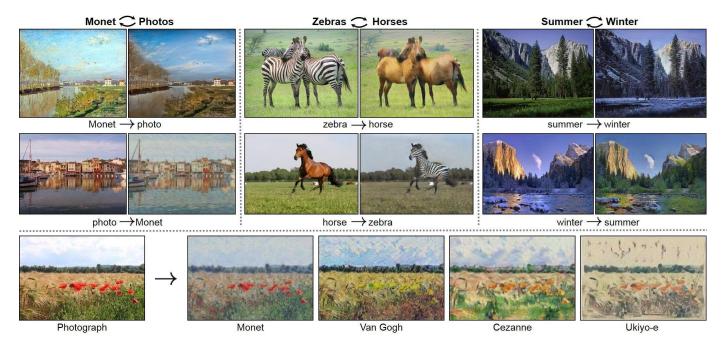

Adversarial Domain Classification

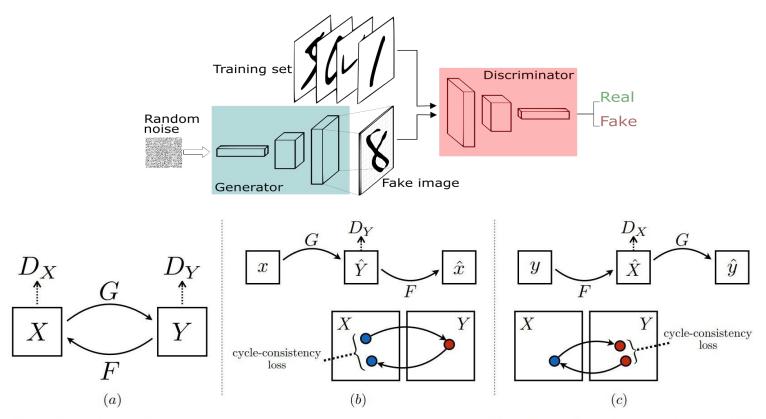

T(

When trained on sour only, feature distribut do not match:

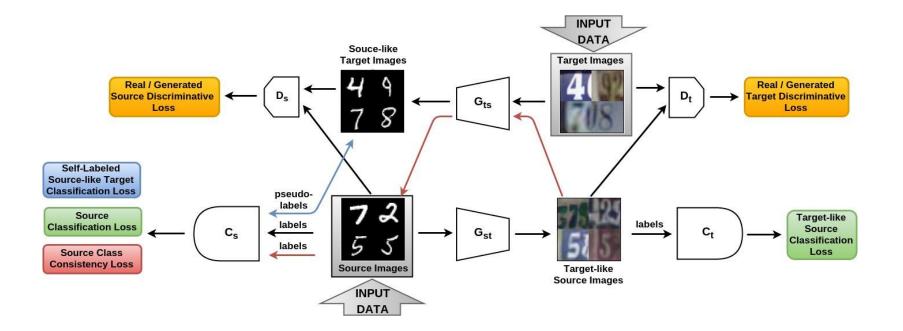

ource
butions
$$S(\mathbf{f}) = \{G_f(\mathbf{x}; \theta_f) | \mathbf{x} \sim S(\mathbf{x})\}$$
$$T(\mathbf{f}) = \{G_f(\mathbf{x}; \theta_f) | \mathbf{x} \sim T(\mathbf{x})\}$$

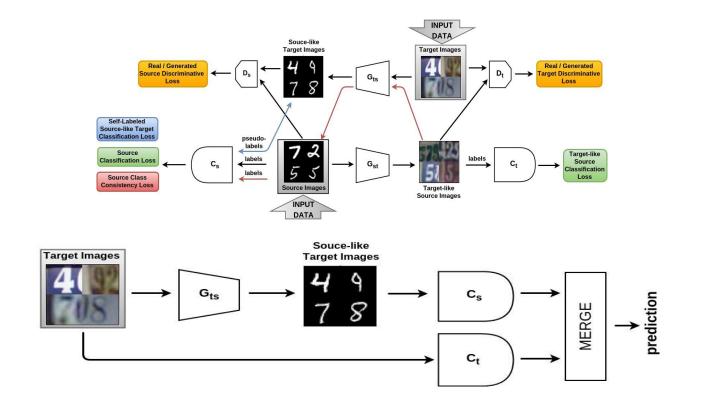
Our goal (after adaptation):





Ganin, Y., et al. "Domain-adversarial training of neural networks". The Journal of Machine Learning Research, 17(1), 2096-2030, 2016.


Visual (Pixel-Level) Adaptation


Zhu, J. Y., Park, T., Isola, P., & Efros, A.. "Unpaired image-to-image translation using cycle-consistent adversarial networks". In ICCV 2017.

Zhu, J. Y., Park, T., Isola, P., & Efros, A.. "Unpaired image-to-image translation using cycle-consistent adversarial networks". In ICCV 2017.

Russo, P., Carlucci, F. M., Tommasi, T., & Caputo, B. "From source to target and back: symmetric bi-directional adaptive gan". In CVPR 2018.

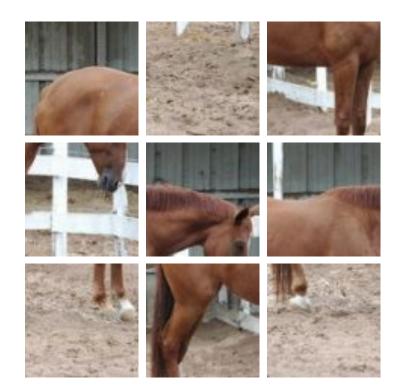
Russo, P., Carlucci, F. M., Tommasi, T., & Caputo, B. "From source to target and back: symmetric bi-directional adaptive gan". In CVPR 2018.

Self-Supervision

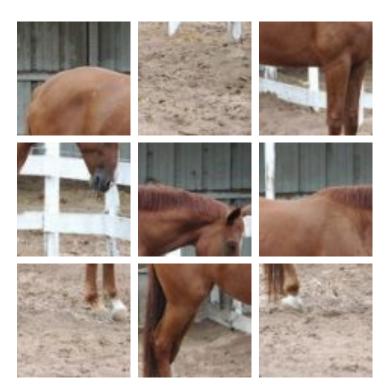
- A form of unsupervised learning where the data provides its own supervision
- In general, withhold some part of the data, and ask the network to predict it
- The task defines a proxy loss, and the network is forced to learn what we really care about, e.g. a semantic representation, in order to solve it

Zhang et al, Colorful Image Colorization. In ECCV 2016

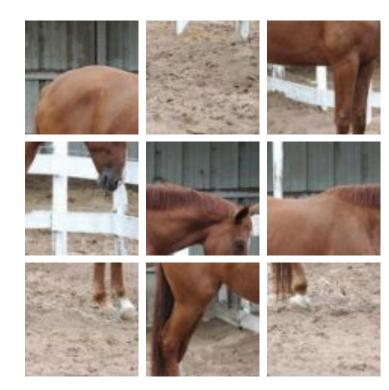
Pathak et al, Image Inpainting, CVPR 2016


Self-Supervision: Why?

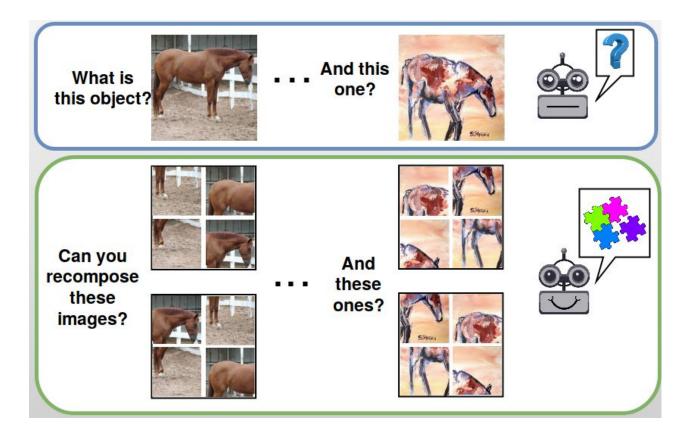
- A form of unsupervised learning where the data provides its own supervision
- In general, withhold some part of the data, and ask the network to predict it
- some areas are supervision starved
- availability of vast numbers of unlabelled images / videos
- how infants may learn

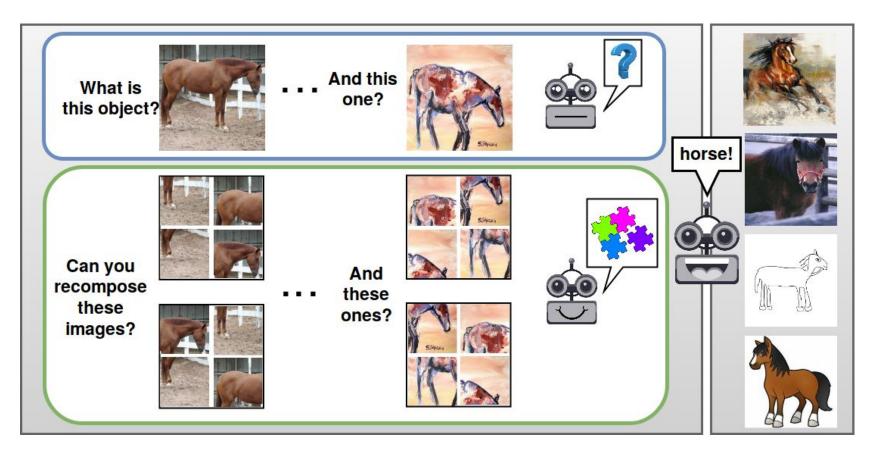

The Scientist in the Crib: What early learning tells us about the mind. Alison Gopnik et al

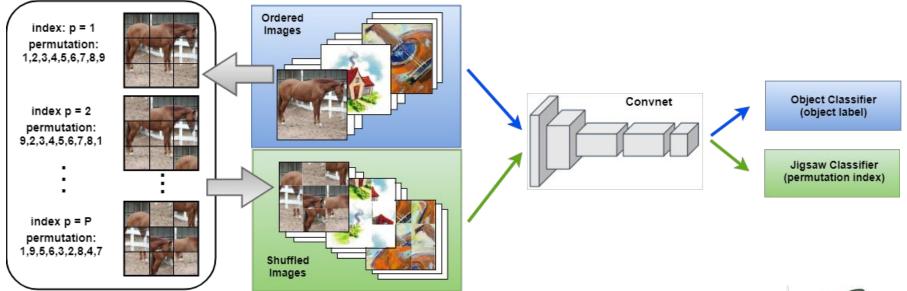
The Development of Embodied Cognition: Six Lessons from Babies. Linda Smith and Michael Gasser

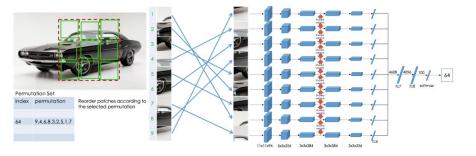


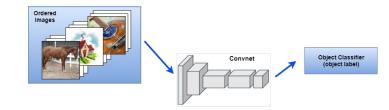
- Decompose an image in patches
- Shuffle them = remove their spatial co-location

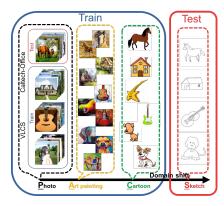




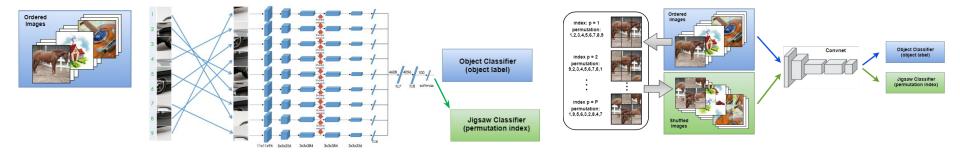


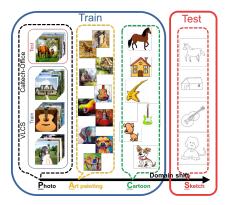



Jigsaw puzzle Generalization (JiGen)

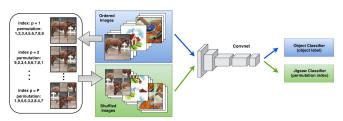

"Domain Generalization by Solving Jigsaw Puzzle", IEEE CVPR 2019 (Oral)

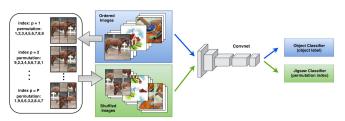
From Features to Images & Multi-Task



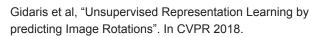


PACS	art_paint	cartoon	sketch	photo	Avg.
C-CFN-Deep All	59.69	59.88	45.66	85.42	62.66
Deep All	63.30	63.13	54.07	87.70	67.05


From Features to Images & Multi-Task

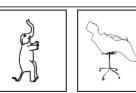

PACS	art_paint	cartoon	sketch	photo	Avg.
C-CFN-Deep All	59.69	59.88	45.66	85.42	62.66
C-CFN- JiGen	60.68	60.55	55.66	82.68	64.89
Deep All	63.30	63.13	54.07	87.70	67.05
JiGen	67.63	71.71	65.18	89.00	73.38

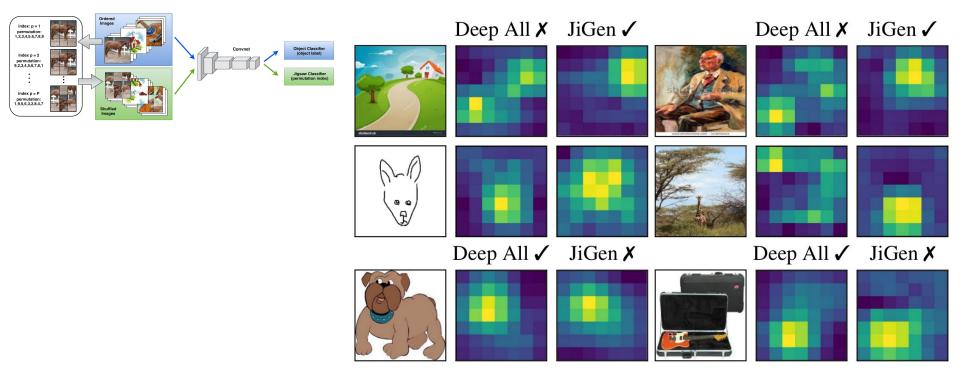
More Results

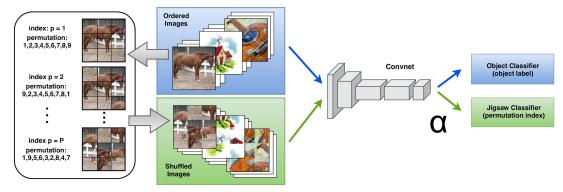

PACS	art_paint cartoon		sketch	photo	Avg.
C-CFN-Deep All	59.69	59.88	45.66	85.42	62.66
C-CFN- JiGen	60.68	60.55	55.66	82.68	64.89
Deep All	63.30	63.13	54.07	87.70	67.05
JiGen	67.63	71.71	65.18	89.00	73.38
AAAI 2018	66.23	66.88	58.96	88.00	70.02
GCPR 2018	63.87	70.70	64.66	85.55	71.20

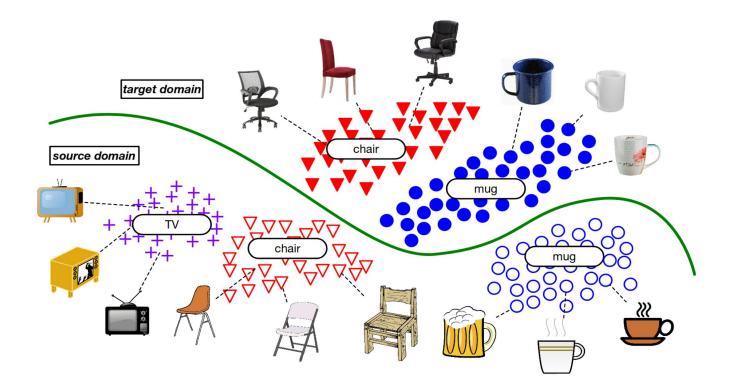
More Results

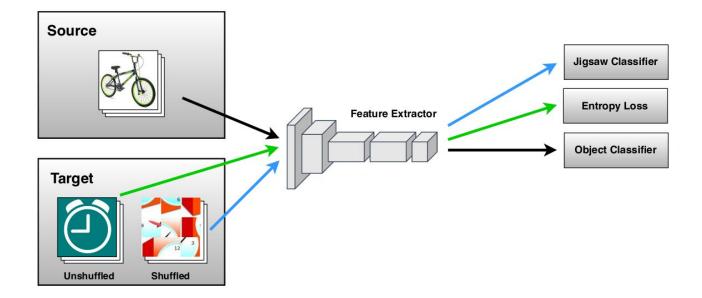
PACS	art_paint	cartoon	sketch	photo	Avg.
C-CFN-Deep All	59.69	59.88	45.66	85.42	62.66
C-CFN- JiGen	60.68	60.55	55.66	82.68	64.89
Deep All	63.30	63.13	54.07	87.70	67.05
JiGen	67.63	71.71	65.18	89.00	73.38
AAAI 2018	66.23	66.88	58.96	88.00	70.02
GCPR 2018	63.87	70.70	64.66	85.55	71.20
Rotation	67.67	69.83	61.04	89.98	71.52

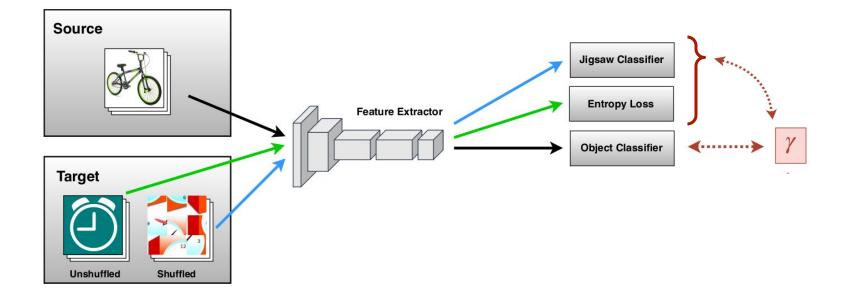


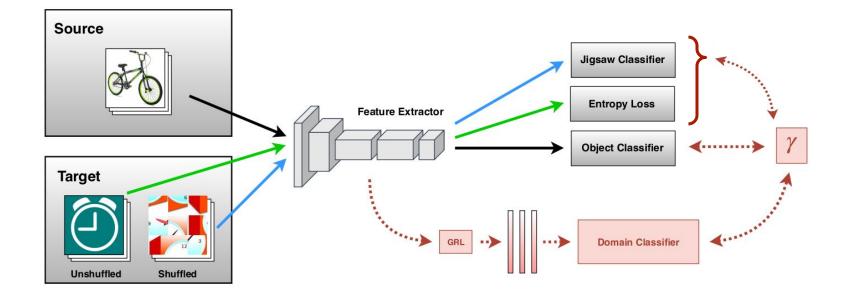




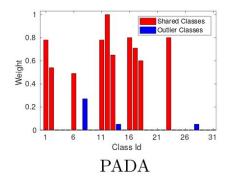

More Results

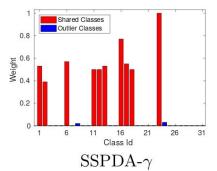

Domain Adaptation

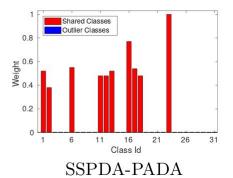



PACS-DA		art_paint.	rt_paint. cartoon sketches		photo	Avg.			
Resnet-18									
	Deep All	74.70	72.40	60.10	92.90	75.03			
[31]	Dial	87.30	85.50	66.80	97.00	84.15			
	DDiscovery	87.70	86.90	69.60	97.00	85.30			
3	Deep All	77.85	74.86	67.74	95.73	79.05			
JiGen $\alpha^s = \alpha^t = 0.7$		84.88	81.07	79.05	97.96	85.74			
	JiGen $\alpha^{t}=0.1$	85.58	82.18	78.61	98.26	86.15			
JiGen $\alpha^t = 0.3$ JiGen $\alpha^t = 0.5$		85.08	81.28	81.50	97.96	86.46			
		85.73	82.58	78.34	98.10	86.19			
	JiGen $\alpha^{t}=0.9$	85.32	80.56	79.93	97.63	85.86			

Cao et al, ECCV 2018






-	Office-31						
	$\mathbf{A}{ ightarrow}\mathbf{W}$	$\mathbf{D}{\rightarrow}\mathbf{W}$	$\mathbf{W} {\rightarrow} \mathbf{D}$	$\mathbf{A} \rightarrow \! \mathbf{D}$	$\mathbf{D} {\rightarrow} \mathbf{A}$	$\mathbf{W} {\rightarrow} \mathbf{A}$	Avg.
Resnet-50	75.37	94.13	98.84	79.19	81.28	85.49	85.73
DAN[15]	59.32	73.90	90.45	61.78	74.95	67.64	71.34
DANN[10]	75.56	96.27	98.73	81.53	82.78	86.12	86.50
ADDA[27]	75.67	95.38	99.85	83.41	83.62	84.25	87.03
$\operatorname{RTN}[16]$	78.98	93.22	85.35	77.07	89.25	89.46	85.56
IWAN [32]	89.15	99.32	99.36	90.45	95.62	94.26	94.69
SAN $[3]$	93.90	99.32	99.36	94.27	94.15	88.73	94.96
PADA[4]	86.54	99.32	100	82.17	92.69	95.41	92.69
TWIN [20]	86.00	99.30	100	86.80	94.70	94.50	93.60
JiGen [5]	92.88	92.43	98.94	89.6	84.06	92.94	91.81
SSPDA	91.52	92.88	98.94	90.87	90.61	94.36	93.20
SSPDA- γ	99.32	94.69	99.36	96.39	86.36	94.22	95.06
SSPDA-PADA	99.66	94.46	99.57	97.67	87.33	94.26	95.49

	Office-31						
	$\mathbf{A}{ ightarrow}\mathbf{W}$	$\mathbf{D}{\rightarrow}\mathbf{W}$	$\mathbf{W} {\rightarrow} \mathbf{D}$	$\mathbf{A} \rightarrow \! \mathbf{D}$	$\mathbf{D}{\rightarrow}\mathbf{A}$	$\mathbf{W} {\rightarrow} \mathbf{A}$	Avg.
Resnet-50	75.37	94.13	98.84	79.19	81.28	85.49	85.73
DAN[15]	59.32	73.90	90.45	61.78	74.95	67.64	71.34
DANN[10]	75.56	96.27	98.73	81.53	82.78	86.12	86.50
ADDA[27]	75.67	95.38	99.85	83.41	83.62	84.25	87.03
$\operatorname{RTN}[16]$	78.98	93.22	85.35	77.07	89.25	89.46	85.56
IWAN [32]	89.15	99.32	99.36	90.45	95.62	94.26	94.69
SAN [3]	93.90	99.32	99.36	94.27	94.15	88.73	94.96
PADA[4]	86.54	99.32	100	82.17	92.69	95.41	92.69
TWIN [20]	86.00	99.30	100	86.80	94.70	94.50	93.60
JiGen [5]	92.88	92.43	98.94	89.6	84.06	92.94	91.81
SSPDA	91.52	92.88	98.94	90.87	90.61	94.36	93.20
SSPDA- γ	99.32	94.69	99.36	96.39	86.36	94.22	95.06
SSPDA-PADA	99.66	94.46	99.57	97.67	87.33	94.26	95.49

Take Home Message

- Deep Learning
- powerful but data-hungry
- not robust across domains, lacks in generalization
- Domain Adaptation Techniques
- allow recognition across domains
- need target unlabeled data at training time
- Domain Generalization
- no need of target data at training time
- can deal with one or multiple sources, no need of domain label (mixed sources)
- Self-Supervision
- powerful tool to exploit unlabeled data and reduce deep-learning data hunger
- powerful tool to support learning across domains, in adaptation and generalization
- improve robustness to label noise, novelty detection...

Take Home Message

- Deep Learning
- powerful but data-hungry
- not robust across domains, lacks in generalization
- Domain Adaptation Techniques
- allow recognition across domains
- need target unlabeled data at training time
- Domain Generalization
- no need of target data at training time
- can deal with one or multiple sources, no need of domain label (mixed sources)
- Self-Supervision
- powerful tool to exploit unlabeled data and reduce deep-learning data hunger
- powerful tool to support learning across domains, in adaptation and generalization
- improve robustness to label noise, novelty detection...

