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1 Introduction

Visual categorization of objects has captured the attention of the vision com-
munity for decades [10]. The increased popularity of the problem witnessed in
the recent years and the advent of powerful computer hardware have led to a
seeming success of categorization approaches on the standard datasets such as
Caltech 101 [15]. However, the high discrepancy between the accuracy of object
classification and detection/segmentation [14] suggests that the problem still
poses a significant and open challenge. The recent preoccupation with tuning
the approaches to specific datasets might have precluded the attention from the
most crucial issue: the representation [41].

This paper will focus on what we believe are two central representational de-
sign principles, namely a hierarchical organization of categorical representations,
more specifically, the principle of hierarchical compositionality, and statistical,
bottom-up learning.

Given images of complex scenes, objects must be inferred from the pixel
information through some recognition process. This requires an efficient and
robust matching of the internal object representation against the representation
produced from the scene. Despite the seemingly effortless performance of human
perception, the diversity and the shear number of visual object classes appearing
in various scales, 3D positions and articulations, which additionally interact with
each other (occlusion, clutter, etc.), have placed a great obstacle to the task.
In fact, it has been shown by Tsotsos in 1990 [53] that the unbounded visual
search is NP complete and thus approximate, hierarchical solutions might be the
most promising/plausible way to tackle the problem. This line of architecture
is also consistent with the findings on biological systems [44, 9]. A number of
authors have further emphasized these computational considerations [13, 23, 2,
47, 26], suggesting that matching should be performed at multiple hierarchical
stages, in order to gradually and coherently limit the otherwise computationally
prohibitive search space [13, 53, 8, 3, 33, 2, 23, 17, 47, 19]. While hierarchies
presented a natural way to represent objects in the early vision works [13, 24,
32, 11], surprisingly, they have not become an integral part of the modern vision
approaches.

Hierarchical representations can derive and organize the features at mul-
tiple levels that build on top of each other by exploiting the shareability of
features among more complex compositions or objects themselves [13, 7, 21, 2,
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30, 25, 51, 38, 55]. Sharing features, on the one hand, means sharing common
computations, which brings about the much desired computational efficiency.
On the other hand, reusing the commonalities between objects can put their
representations in relation, thus possibly leading to high generalization capa-
bilities [13, 30, 51]. A number of hierarchical recognition systems have been
proposed and confirmed the success of such representations in object catego-
rization tasks [22, 3, 21, 48, 45, 1, 47, 56, 34, 36, 51, 46, 42, 38, 50].

It must be emphasized, however, that hierarchical representations do not nec-
essarily imply computational efficiency and representational plausibility. In this
paper, we will argue for a special form of a multilayered architecture — a com-
positional hierarchy. The nodes in such a hierarchy are formed as compositions
that, recursively, model loose spatial relationships between their constituent
components. The abundant computational arguments accumulated throughout
the history of computational vision speak in favor of its efficiency, robustness
to clutter, and flexibility to capture structural variability. While the classical
neural networks have been commonly thought to be a faithful model of the hier-
archical processing in the brain, interestingly, ideas of compositional units have
also started to emerge in the neuroscience community [4, 9, 54].

There have been a number of attempts at compositional categorical repre-
sentations [13, 11, 23, 8, 3, 2], however, the lack of automation might have been
a major contributing factor that prevented better realizations of these ideas. It
is, in fact, the absence of unsupervised, bottom-up learning principles that also
seems to be the source of criticism by the neuroscience community targeted at
today’s computational models of vision [39]. By statistically learning the priors
to bindings of local features, the representation emerging in this way would be
well adjusted to the regularities present in images and could thus reliably, ro-
bustly and quickly form hierarchical groupings facilitating the final recognition
of objects.

Based upon the computational considerations of compositional hierarchies
and benefits of the bottom-up, unsupervised learning, we will summarize our
recent approach to representing object categories within a learnable, hierar-
chical compositional framework. The developed bottom-up, statistical approach
makes use of simple atomic features, i.e. oriented edges, to gradually learn more
complex contour compositions that model loose spatial relations between the
constituent features. The learned hierarchical vocabulary of features, termed
parts, is organized in accordance with the principle of efficient indexing. This
ensures that local retrieval of compositional models during the online object
recognition stage runs in a roughly constant time — despite an exponential in-
crease in the number of vocabulary features along the hierarchical layers. An
off-line grouping stage of part labels brings additional flexibility into the learned
representation. The learned contour compositions can be further combined into
categorical nodes with minimal human supervision, whereby the hierarchical
sharing of features and the efficient indexability constraints could present an
important step towards scalable representations of object categories.

The remainder of this chapter is organized as follows. In Section 2 we argue
for the design principles we believe are important to build plausible represen-
tation of object structure. Section 3 reviews the work most related to ours.
Section 4 is more technical and summarizes our recently developed approach
to learning hierarchical compositional representations of object structure. The
experimental results are presented in Section 5. The chapter concludes with a
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summary and discussion in Section 6.

2 Design principles for representing object struc-
ture

A representation must drive the recognition process from the pixel level through
more and more complex interpretations towards object categories themselves.
It is thus critical to devote our attention to design principles that would accom-
modate for scalability and generalizability of the representation and robustness
as well as efficiency of the subsequent recognition. This Section brings forward
two issues we believe are crucial for forming plausible representations of object
structure.

We will argue for hierarchical compositionality as the line of representa-
tional architecture and the principle of unsupervised, bottom-up learning that
statistically extracts the multiple layers of representation from images making it
adjustable to the regularities present in the otherwise highly variable structure
of objects.

2.1 Hierarchical compositionality

Compositionality refers to a property of hierarchical representational systems
that define their internal nodes in terms of simpler constituent components ac-
cording to a set of production rules [7]. The rules of composition usually take
the form of the Gestalt laws of grouping [37, 16] or similar forms of predefined
bindings [13, 3, 47, 50, 59] that in some form or another incorporate spatial
relations into the compositional features. Computational benefits of composi-
tionality in terms of storage, processing demands, robustness to clutter and the
exponential expressive power have long been emphasized in the computer vision
literature [6, 3, 23, 58, 59, 19, 8]. We substantiate these issue below.

Storage demands. In the current state-of-the-art flat representations mil-
lions of distinctive image patches (with dimensions ranging around 25×25 pixels)
or local descriptors such as SIFT or HoG must be stored to produce good recog-
nition results. In the classical hierarchies such as neural networks the number
of necessary features to warrant competitive performance is grantedly signifi-
cantly lower (the number ranges from 10− 20 in the lowest layer and increases
to the order of a few thousand in the top-most layer), however, each hierarchical
unit still must encode weights to all feature types from a layer below covering
a certain spatial neighborhood. Conversely, as the complexity and size or rep-
resentation also grows with the number of layers in compositional hierarchies,
each higher-level composition encodes only pointers to a small number of its con-
stituent parts and a modest amount of additional information binding the parts
spatially. Furthermore, since all the higher-level compositions are constructed
from a smaller common vocabulary from a layer below, it is easier to compare
and generalize between them. Consequently, extending the hierarchical library
to novel compositions can operate in a more controlled manner leading to more
compact and parsimonious hierarchical vocabularies.

Processing complexity. Since each hierarchical unit is shared among
many more complex higher layer compositions, most of the computations per-
formed during an online recognition stage are inherently common and can thus
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be only performed once. Such sharing of computations greatly reduces the
computational cost of matching with respect to searching for each complex in-
terpretation in isolation. Moreover, as processing of images is done by sequential
(hierarchical) testing of compositional hypotheses, recognition towards the final
categorical nodes proceeds in a more controlled and fast manner by pruning the
object hypothesis space along the hierarchical path.

The important advantage of discrete representations such as the compo-
sitional architectures is also the possibility of implementing the indexing and
matching scheme. Since each internal node of the hierarchical vocabulary par-
ticipates in only a smaller subset of all compositions from the incident layer
above, only this specific subset needs in fact be matched against the local im-
age neighborhood during the online recognition stage. Consequently, retrieval
of permitted composite models can be performed in constant time, the process
termed indexing, while the verification of the retrieved candidates runs in sub-
linear time with respect to the size of the hierarchical library. This procedure
will be described in more detail in Subsection 4.2.

Robustness to clutter, repeatability of detection. Each hierarchical
node makes inference over a certain size of a local neighborhood, usually referred
to as its receptive field. The level of hierarchy brings about larger and larger
portions of an image that the nodes “cover” and which are likely to contain many
structures pertaining to different objects in the scene or rarer structures that
the hierarchical units are not essentially tuned to. The classical neural networks
that define the units as some non-linear function of an integrative weighted sum
over its entire receptive field both spatially as well as in all constituent feature
types (schematically depicted in Figure 1) are inherently prone to error since the
signal coming from multiple objects is essentially mixed. This can be alleviated
by enforcing sparsity on the feature weights to enable a focus on only particular
substructures of receptive fields. In turn, compositions are inherently sparse
— they are designed to respond to only small spatial subsets of their receptive
fields in which the presence of only a few feature types is accounted for (depicted
in Figure 1). This ensures that clutter has little effect on the activity within
the hierarchical recognition process and additionally permits faster processing
over the traditional neural networks approaches.

Expressive power. Even a small number of feature types defining the out-
set of the hierarchy can construe a large number of possible combinations, which
becomes even more pronounced with the level of hierarchy. Importantly, as the
vocabulary is expected to grow with exponential tendency as new layers (com-
positions of compositions that essentially should converge to objects themselves)
are added and the complexity as well as distinctiveness of the representation in-
crease, the principle of indexing ensures tractability of the recognition process.

Feedforward and feedback. There has been a long-standing debate about
what can or cannot be achieved in a strictly feedforward manner in vision in gen-
eral and in hierarchical categorization approaches in particular [49, 28, 31, 52].
There is neurophysiological evidence proving good categorization performance
in the first feedforward pass by humans [49, 57], while many authors empha-
size the importance of both, feedforward and feedback and the iterative process
between the two [28, 31, 55, 52]. The ability to traverse back from the final
recognition nodes inferred from the scene back to the original pixels that pro-
duced the high-level decision is important for segmentation as well as looping
between bottom-up and top-down inference on ambiguous visual input. This
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kind of reciprocal inference presents an impediment for the neural network ap-
proaches [27] and their closely related architectures [43] since the firing response
of a hierarchical unit is too reductive. The information from a cube-like recep-
tive field over lower-layer feature responses is conveyed in only one value — the
weighted sum. This makes it difficult to determine and trace back what has
in fact caused the response (depicted in Figure 1) while also making inference
less controlled and reliable. Conversely, in compositional architectures the rep-
resentation inferred from the visual scene is essentially a graph in which each
node has only a small number of incident descendants. Such a representation
inherently allows for iterative loops between the data (image) and high-level
inferences, whereby the segmentation of objects is simply an inverse process of
recognition.

A part of the biological evidence could potentially support such a line of
compositional architecture [40, 54, 29, 4, 9]. Additionally, attempts have been
made to map the mathematical theory of compositionality onto the neuronal
structure of the visual cortex [7].

Figure 1: Left: Neural networks. Right: Hierarchical compositionality.

2.2 Statistical, bottom-up learning

The appealing properties of compositional hierarchies and their advantages over
the related hierarchical architectures might prove them a suitable form of rep-
resenting visual information. However, while learning presents an integral part
of the neural networks approaches, most compositional approaches have been
hindered by the use of predetermined sets of features or grouping rules. Here,
we argue for the importance of learning, specifically, we emphasize the critical
role of unsupervised, bottom-up learning.

Bottom-up learning. There seems to be a consensus that the higher-level
concepts such as selectivity to object categories are learned since, evidently,
a genetic predisposition towards e.g. mobile phones and similar ever-evolving
technological gadgets would seem far-fetched. Interestingly, there are opposing
views on whether the tunings in the early cortical areas are learned or hard-wired
by evolution. The diverse physiology underlying different brain areas suggests
specific functionalities and computations performed. This striking systematicity
surely is a result of evolution and it undoubtedly guides and controls what the
cells can or cannot become tuned to. However, it is highly improbable that all
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the low-level sensitivities are instilled genetically — the brain must, after all,
adjust its perceptual functioning with respect to its sensory receptors and the
input it receives.

Computationally speaking, the categorical representations are built upon a
set of features that must at some point operate on the image data. The design
of these features (for example corners, T- and L-junctions, etc) should not rely
on our intuition but rather be learned from the data in order to conform well
to the local structures of images. The features/models in the lowest level of the
hierarchy should thus be brought down close to the images by performing simple
operations with little semantic value. The subsequent learning should then be
designed in order to statistically build more complex and semantic models in
composition.

Once the visual building blocks are learned, learning of objects becomes
tractable since only a small number of descriptive structural features are needed
to explain them away. Thus, categorical learning can proceed mainly in the
higher hierarchical layers and can thus operate fast and with no or minimal
human supervision.

Unsupervised learning. Features and their higher level combinations
should be learned in an unsupervised manner (at least in the first stages of the
hierarchy) in order to avoid hand-labeling of massive image data as well as to
capture the regularities within the visual data as effectively and compactly as
possible [5, 44, 12, 25, 17, 19]. Moreover, there are strong implications that the
human visual system is driven by these principles as well [20].

By learning the compositional binding priors the representation becomes
adjustable to the structural variability of objects. Consequently, it enables a
computationally feasible recognition process where the majority of the expo-
nential number of possible compositional groupings are made unimportant (i.e.
unrepeatable) by the statistics of natural images.

Incremental learning. Desirably, the hierarchical vocabulary should be
extended incrementally as new images/objects are seen by the system. Per-
formed in this way, we avoid batch processing of masses of images (which likely
might not even be possible), while on the other hand, we ensure the represen-
tation is open to continuous adaptation of the visual environment.

The issue of incrementality in hierarchical architectures is not completely
apparent. If features are changed, removed or added at any layer exclusive of the
top-most one, all the features on the layers above must be adjusted accordingly.
This problem is particularly evident in the neural network type of hierarchies
where adding one feature results in the inefficient restructuring of the weights of
the complete representation. In compositional hierarchies this problem concerns
only a small subset of higher-level features that compositionally emerge from
the point of change. Furthermore, by learning the representation sequentially,
i.e. optimally adjusting layer after layer to the regularities present in the natural
signals, we guarantee that very little encoded information (if something at all)
will need to be re-adapted in the deepest layers of the hierarchy as new data is
encountered.
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3 Related work

The current state-of-the-art categorization methods predominantly build their
representations on image patches [34, 56] or other highly discriminative features
such as the SIFT [48]. Since the probability of occurrence of such features is
very small, masses of them need to be extracted to represent objects reason-
ably well. This results in computationally highly inefficient recognition, which
demands matching of a large number of image features to enormous amounts
of prototypical ones. This drawback has been alleviated within the most recent
methods that employ hierarchical clustering in a high dimensional feature space,
yet the resulting representations still demand at least a linear search through
the library of stored objects/categories [34, 48].

To overcome the curse of large-scale recognition, some authors emphasized
the need for indexable hierarchical representations [8, 3, 2]. A hierarchy of
parts composed of parts that could limit the visual search by means of indexing
matching in each individual layer would enable an efficient way to store and
retrieve information.

However, a majority of hierarchical methods perform matching of all proto-
typical units against all features found in an image. Mutch et al. [35] employ
matching of all 4000 higher-layer templates against features extracted in each
pixel and scale of the resampled pyramid. This is also a drawback in layers of
clustered histograms used in [1] and hierarchical classifiers in [27].

On the other hand, the success of hierarchical methods that do employ the
principles of indexing and matching has been hindered by the use of hand-coded
information. In [3], the authors use hand-crafted local edge features and only
learn their global arrangements pertaining to specific object categories. The
authors of [43] use predesigned filters and process the visual information in the
feed-forward manner, while their recent version [46] exchanged the intermediate
layer with random combinations of local edge arrangements rather than choosing
the features in accordance with the natural statistics.

Approaches that do build the layers by learning and are able to make a suffi-
cient number of them (by starting with simple features) mostly design the parts
by histogramming the local neighborhoods of parts of the previous layers [1] or
by learning the neural weights based on the responses on previous layers [27, 22].
Besides lacking the means of indexing, additional inherent limitation of such
methods is the inefficiency in performing incremental learning; as the novel cat-
egories arrive, the whole hierarchy has to be re-adapted. Moreover, histograms
do not enable robust top-down matching, while convolutional networks would
have problems with the objects or features that are supersets/subsets of other
features.

While the concepts of hierarchical representations, indexing and matching,
statistical learning and incrementality have already been explored in the lit-
erature, to the best of our knowledge, they have not been part of a unifying
framework. This chapter summarizes our recent, novel approach to building
a hierarchical representation that aims to enable recognition and detection of
a large number of object categories. Inspired by the principles of efficient in-
dexing (bottom-up), robust matching (top-down), and ideas of compositionality,
our approach learns a hierarchy of spatially flexible compositions, i.e., parts,
in a completely unsupervised, statistics-driven manner. As the proposed archi-
tecture does not yet perform large-scale recognition, it makes important steps
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towards scalable representations of visual categories.
The learning algorithm proposed in [21], which acquires a hierarchy of local

edge arrangements by correlation, is in concept similar to our learning method.
However, the approach demands registered training images, employs the use of
a fixed grid, and is more concerned with the coarse-to-fine search of a particular
category (i.e. faces) rather than finding features shared by many object classes.

4 Learning a Compositional Hierarchy of Parts

This Section summarizes our recently proposed framework that learns a hier-
archical compositional representation of object structure from a set of natural
images without supervision. The complete architecture addresses three major
issues: the representation, learning the representation, and matching the repre-
sentation against images.

The proposed representation takes the form of a compositional hierarchy
with discrete nodes — compositions, also termed parts. Each part in the hierar-
chical vocabulary models loose spatial relations between its components, which
at the lowest level correspond to simple contour fragments. The first layer of
the hierarchy is fixed (but can in fact be a set of arbitrary filters) and it is also
the only layer that operates directly on images. All the higher layers that make
inference at subsequent stages are learned without supervision.

The approach is in essence composed of two recursively iterated steps:

• a layer-learning process that statistically extracts parts by sequentially
increasing the number of subparts contained in local image neighborhoods,
and

• a part matching step that finds the learned compositions in images with
an efficient and robust indexing and matching scheme.

Layers are learned sequentially, layer after layer, optimally adjusting to the
visual data. The advantage of the proposed learned representation lies in the
capability to model exponential variability present in images, yet still retaining
the computational efficiency by keeping the number of indexing links per each
part approximately constant across layers.

The compositional representation and its envisioned properties are explained
in Subsection 4.1. In Subsection 4.2 the hierarchical recognition process that
matches the representation against images is discussed. We summarize the un-
supervised learning procedure that extract a hierarchy of progressively more
complex contour compositions in Subsection 4.3. Finally, Subsection 4.5 dis-
cusses a potential step towards categorical representations.

4.1 The compositional library of parts

We first present the properties of the envisioned hierarchical representation and
the information that we would like to be coded within its discrete nodes —
parts/compositions.

To abbreviate notation, let Ln denote the n-th Layer of the hierarchical
library. We define the parts within the hierarchy recursively in the following
way. Each part in Ln codes spatial relations between its constituent subparts
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from a layer below. Formally, each composite part Pn
` in Ln is characterized by

a central subpart and a list of remaining subparts with their positions relative
to the center:

Pn
` =

(
Pn−1

central, {
(
Pn−1

j ,µj ,Σj

)
}j

)
,

where µj = (xj , yj) denotes the relative position of subpart Pn−1
j , while Σj

denotes the allowed variance of its position around (xj , yj). An example of a
L3 composition is depicted in Figure 2.

The hierarchy starts with a fixed L1 composed of a set of arbitrary filters.
Here we choose a set of Gabor filters that best respond to oriented edges.

Figure 2: Example of a

L3 composition.

Figure 3: Left: Indexing – evoking higher level composite

hypotheses. Right: Matching – verification of a composite

library part.

4.2 Hierarchical recognition: The indexing and matching
scheme

Let us suppose that the representation as described in the previous Subsection
has already been acquired (how this is done will be explained in the following
Subsection). This Subsection discusses how the incoming images are prepro-
cessed and how the hierarchical representation is subsequently matched against
the data. The complete procedure can be briefly summarized as follows:

• Each image is first processed with filters comprising L1 in order to get a
(discrete) set of local contour fragments. Each contour segment, i.e. part,
also codes its orientation and position in an image.

• Around each detected part, higher-order compositions are matched within
the so called indexing and matching scheme. At each processed layer a
discrete set of parts coding the types of the detected local structures and
the corresponding locations is passed onto sequential matching stages.
The hierarchical processing steps are all general in their traversal from
one layer to the next and will thus be described in their general form.
The procedure is illustrated in Figure 4.2.

• To attain robustness with respect to the scale of the objects (or their
smaller substructures), the hierarchical recognition procedure is performed
at several re-scaled versions of the image. This is schematically depicted
in Figure 4.2.
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Processing with Layer 1. For a given image, we first apply a set of L1

filters, here chosen to be the (odd and even) Gabor filters. Next, local maxima
of the Gabor energy function [17] that are above a low threshold are found
(these pertain to local oriented edges). The set of points (corresponding to the
local maxima) together with their locations and labels (types) of filters that
locally produced the maximal responses defines the list of L1 part detections,
namely {π1

k}k. In general, πn
k stands for a realization of the Ln part Pn

`k
with a

corresponding location at which it was detected in an image; πn
k = {Pn

`k
, xk, yk}

(here k denotes the successive number of the found part).
This process is repeated at several image scales. However, for simplicity of

notation we omit the delineation of part detections into separate scales. The
obtained list of binary part detections, i.e. {π1

k}k, serves as input to subsequent
hierarchical matching stages.

Hierarchical recognition. Let {πn−1
k }k denote the list of the binary part

detections from layer Ln−1. In order to find a higher level image interpreta-
tion, the local neighborhoods around each detected πn−1

k part are compared
against the composite Ln-parts stored in the hierarchical library. Each part
realization πn−1

k = (Pn−1
`k

, xk, yk) in the image under consideration is subjected
to the indexing and matching procedure — efficient local search for higher level
compositions.

The part Pn−1
`k

encoded in πn−1
k plays the role of the central part in only a

subset of all compositions at layer Ln of the library. This list is an internal part
of the library and can be accessed in constant time during the online processing
of images — the process referred to as indexing. The matching step demands
comparing the local spatial neighborhood of πn−1

k against the allowable (re-
trieved in the indexing step) prototypical compositions within the hierarchical li-
brary. Matching of one such composition, e.g. Pn

` =
(
Pn−1

central, {
(
Pn−1

j ,µj ,Σj

)
}j

)
(where Pn−1

central corresponds to the part label Pn−1
`k

), demands checking for the
presence of all subparts {

(
Pn−1

j ,µj ,Σj

)
}j pertaining to the composition Pn

` at
their relative locations, µj = (xj , yj), and positioned within the allowed vari-
ances, Σj , with respect to the position of the central part type Pn−1

`k
coded

in πn−1
k . The indexing and matching procedure is schematically depicted in

Figure 3.

4.3 Unsupervised learning of part compositions

The basic idea behind the learning procedure is to extract statistically salient
compositions that encode spatial relations between the constituent parts from
the layer below. Each modeled relation between components allows also for
some displacement (variance) in spatial position.

The learning algorithm is in principle general – proceeding in the same man-
ner when building each additional layer. It will thus be described in its general
form.

The learning process consists of three stages, namely, (1) the local inhibi-
tion performed around each image feature (part), followed by (2) the statistical
updating of the so-called spatial maps that capture pairwise geometric relations
between parts, and finally, (3) learning the higher order compositions by tracking
co-occurrence of spatial pairs. We must emphasize that each final composition
can have a varying number of subcomponents (the number can be anything from
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Figure 4: The learned hierarchical library of

parts is applied in each image point (robustness

to position of objects) and several image scales

(robustness to objects’ size)

Figure 5: The hierarchical recog-

nition architecture.

2 and larger).
Learning is performed by gathering statistics over a large body of natural

images processed up to the last (learned) layer in the hierarchical library, e.g.
Ln−1. Each image is thus represented by a list of parts with corresponding loca-
tions, {πn−1

k }k. A small local neighborhood around each πn−1
k will be inspected

in a two-stage process. The first, most crucial step aims to reduce the unnec-
essary redundancy coded in neighboring parts, referred to as local inhibition.
Since each πn−1

k is an (n − 1)-th order composition, it is in fact a set union of
a few detected L1 parts. Within the inhibition step we remove all neighboring
parts around πn−1

k that have a large set intersection with respect to the L1

image parts. This step removes all features that code a large portion of edge
structure already coded by πn−1

k . In the next step, learning is performed by
tracking frequent co-occurrences of part types and their relative locations.

The learning process commends by forming a set of all allowable pairs of
part identities. The list is accompanied by a set of empty matrices, where the
dimensions correspond to the spatial extent of the local neighborhoods. The pre-
pared set thus contains information of type: Cn

k,j := (Pn−1
k ,Pn−1

j ,Vk,j), where
Vk,j represents a local spatial voting space for the corresponding combination
of pairs of part types Pn−1

k and Pn−1
j .

Structure of small neighborhoods in terms of part locations is inspected
around each part, πn−1

k . The philosophy of local receptive field processing
is the following: the location of each part πn−1

j = (Pn−1
j , xj , yj) within the

neighborhood of and relative to πn−1
k will update the voting space Vk,j in Ck,j

accordingly:

x := cx+ xj − xk, y := cy + yj − yk

Vk,j(x, y) = Vk,j(x, y) + 1,

where (cx, cy) denotes the center of the spatial map Vk,j .
After all images are processed, we detect voting peaks in the learned spatial

maps Vk,j , and for each peak, a spatial surrounding area is formed – modeled
by a Gaussian distribution, (µj ,Σj).
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In the final step, the local image neighborhoods are checked once again
by projecting the learned spatial pairs and repeating the learning process by
increasing the number of subparts modeled in a composition (the reader is re-
ferred to [19] for details) or by tracking the most frequent co-occurrences of the
projected spatial pairs.

The final selection of composite parts follows the indexibility constraint, i.e.,
each part of the lower, (n − 1)-th Layer, must not index into too many higher
layer compositions. Thus the compositions acquired in the learning procedure
are sorted according to their decreasing probabilities and only a number of
statistically most salient compositions consequently define the next layer. We
set the upper bound to the order of 10 − 20 times the number of parts in the
previous, (n− 1)-th Layer, meaning that on average each part in Ln−1 indexes
into 10 to 20 composite parts in Ln. The thresholds used are chosen to comply
with the available computational resources and affect only the number of finally
selected parts and therefore the efficiency of the representation.

4.4 Grouping of part labels by similarity and co-occurrence

The problem with the learned compositions is the fact that they are realized
as discrete labels (part types) without a proper geometrical parametrization
that would enable a comparison between them. Consequently, two visually
similar curvatures are likely to be encoded in two different hierarchical com-
positions. We deal with this issue in two ways. One approach is grouping by
co-occurrence [19] where parts that frequently co-occur in close spatial proximity
of one another are assigned the same label (part type).

However, two visual shapes that are only similar to a certain extent are
likely to have a small, random co-occurrence. It is thus crucial to also have
the means of comparing two different parts in a geometrical sense. Since each
part is formed as a recursive spatially loose composition, a comparison can
be performed in a similar manner. We consider two parts to be perceptually
similar if both have a similar spatial configuration of subparts. For details of
such recursive comparison of compositions we refer the reader to our original
work [18].

4.5 Category-specific higher layers

Learning the lower-layer sharable parts in a category-independent way can only
get so far — the overall statistical significance drops, while the number of parts
reaches its critical value for learning. Thus, learning of higher layers proceeds
only on a subset of parts — the ones that are the most repeatable for a spe-
cific category. Specifically, the learning of higher layers is performed in images
of individual categories, whereby the final categorical layer then combines the
most repeatable parts through the object center to form the representation of a
category.

5 Experimental results

We applied our method to a collection of 1500 natural images containing a
number of diverse categories (cars, faces, mugs, dogs, etc.). A few examples
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of the images used for learning are presented in Figure 6. The complete learn-
ing process took approximately 5 hours on one core of an Intel Core-2 CPU
2.4 Ghz computer. The learning procedure produced a compositional hierarchy
consisting of 160 parts on Layer 2 and 553 parts on Layer 3 (a few examples
from both layers are depicted in Figure 7). The learned features include cor-
ners, end-stopped lines, various curvatures, T- and L-junctions, etc. It must be
noted that a much smaller set of images is in fact needed to result in virtually
the same hierarchy. Experiments have shown that learning on approximately
50 images produces almost exactly the same L2 vocabulary as the larger set of
1500 images, while approximately 200 images are required to learn the third
layer of the hierarchy. We have also experimented with using different filters at
L1. The learned vocabulary for the Gabor filters that also take into account the
polarity of edges is presented in Figure 8. We must emphasize, however, that
both figures 7 and 8 only show the contours that the parts produce maximal
responses to. Each learned part in the vocabulary is in fact a composition of
the form shown in Figure 2.

To put the proposed hierarchical framework in relation to other hierarchical
approaches as well as other categorization methods, which focus primarily on
shape information, the approach was tested on the Caltech 101 database [15].
The Caltech 101 dataset contains images of 101 different object categories with
the additional background category. The number of images varies from 31 to
800 per category, with the average image size of roughly 300× 300 pixels. Each
image was processed on 3 different scales, spaced apart by

√
2. The average

processing times per image per layer (including all three scales) obtained in
a C++ implementation are the following: 1.6 seconds for L1, 0.54 seconds
for L2 and 0.66 seconds for L3. The features were combined with a linear
SVM for multiclass classification. For both, 15 and 30 images for training we
obtained 60.5% and 66.5% classification accuracy, respectively, which is the best
result reported by a hierarchical approach so-far. While we do not believe that
SVM classification is the proper form of categorization, the experiments were
performed to demonstrate the utility of the learned features with respect to
the features used in the current state-of-the-art approaches applied in similar
classification settings.

We have also attempted learning higher — categorical layers, using images
of specific categories for training. The learning of categorical layers, namely L4,
was run only on images containing faces (6 out of 20 images used for training
are shown in the top row of Figure 9), cars (6 out of 20 training images are
depicted in the middle row of Figure 9), and mugs (all training images are
presented in the bottom row of Figure 9). The obtained parts were then learned
relative to centers of faces, cars and mugs, respectively, to produce L5 - category
layer. Figure 10 shows the learned layers, while Figure 11 depicts the learned
hierarchical vocabulary for faces with compositional links shown (second image
in the top row). It must be noted that the first three layers in the hierarchy
are general — the same for faces as for cars and mugs, while only layers 4
and 5 are not sharable among the three categories. The recognition and the
subsequent segmentation (tracing the recognition nodes down the the image)
of parts through the hierarchy on example images is presented in Figure 11.
In Figure 12 several examples of mug detections are presented, showing the
approach is capable of recognizing various class members, hand-drawn objects
as well as peculiar mug-like compositions (a drawn handle plus a basket, a drawn
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glass plus some handle-like object added accordingly).

Figure 6: Examples of natural images used to learn the category-independent layers.

Layer 1

Layer 2 Layer 3

Figure 7: L1 (fixed - oriented edges), and learned L2 and L3 parts (only a subset is

shown) used in the Caltech 101 experiments.

Layer 1

Layer 2 Layer 3

Figure 8: L1 (fixed - polarity filters), and learned L2 and L3 parts (only a subset is

shown).
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Figure 9: Examples of images used to learn the categorical layers.

Layer 4 faces Layer 4 mugs Layer 5 faces Layer 5 mugs

Figure 10: Learned categorical layers L4 and L5 for faces and mugs.

Figure 11: Top left two images: learned 3−layer hierarchy for the Caltech experiment;

learned hierarchy for faces with compositional links shown. Examples of detections of

categories cars, mugs, and faces, where the first three layers in the library are common

to all three categories.

6 Summary and Discussion

This chapter summarized our recent approach to building a representation of
object structure. The method learns a hierarchy of flexible compositions in
an unsupervised manner in lower, category-independent layers, while requiring
minimal supervision to learn higher, categorical layers.

Furthermore, the design of parts is incremental, where new categories can be
continuously added to the hierarchy. Since the hierarchy is built as an efficient
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Figure 12: Detections of mugs.

indexing machine, the system can computationally handle an exponentially in-
creasing number of parts with each additional layer. The results show that
only a small number of higher layer parts are needed to represent individual
categories, thus the proposed scheme would potentially allow for an efficient
representation of a large number of visual categories.

Our future work includes improvements over the current creation of the
categorical layers, adding different modalities such as color, texture and motion,
and improving inference by using iterated loops between the bottom-up and top-
down information flow.
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